Codes and corpora for paper "Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence" (NAACL 2019)
- pytorch: 1.0.0
- python: 3.7.1
- tensorflow: 1.13.1 (only needed for converting BERT-tensorflow-model to pytorch-model)
- numpy: 1.15.4
- nltk
- sklearn
Since the link given in the dataset released paper has failed, we use the dataset mirror listed in NLP-progress and fix some mistakes (there are duplicate aspect data in several sentences). See directory: data/sentihood/
.
Run following commands to prepare datasets for tasks:
cd generate/
bash make.sh sentihood
Train Data is available in SemEval-2014 ABSA Restaurant Reviews - Train Data and Gold Test Data is available in SemEval-2014 ABSA Test Data - Gold Annotations. See directory: data/semeval2014/
.
Run following commands to prepare datasets for tasks:
cd generate/
bash make.sh semeval
Download BERT-Base (Google's pre-trained models) and then convert a tensorflow checkpoint to a pytorch model.
For example:
python convert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path uncased_L-12_H-768_A-12/bert_model.ckpt \
--bert_config_file uncased_L-12_H-768_A-12/bert_config.json \
--pytorch_dump_path uncased_L-12_H-768_A-12/pytorch_model.bin
For example, BERT-pair-NLI_M task on SentiHood dataset:
CUDA_VISIBLE_DEVICES=0,1,2,3 python run_classifier_TABSA.py \
--task_name sentihood_NLI_M \
--data_dir data/sentihood/bert-pair/ \
--vocab_file uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint uncased_L-12_H-768_A-12/pytorch_model.bin \
--eval_test \
--do_lower_case \
--max_seq_length 512 \
--train_batch_size 24 \
--learning_rate 2e-5 \
--num_train_epochs 6.0 \
--output_dir results/sentihood/NLI_M \
--seed 42
Note:
- For SentiHood,
--task_name
must be chosen insentihood_NLI_M
,sentihood_QA_M
,sentihood_NLI_B
,sentihood_QA_B
andsentihood_single
. And forsentihood_single
task, 8 different tasks (use datasets generated in step 1, see directorydata/sentihood/bert-single
) should be trained separately and then evaluated together. - For SemEval-2014,
--task_name
must be chosen insemeval_NLI_M
,semeval_QA_M
,semeval_NLI_B
,semeval_QA_B
andsemeval_single
. And forsemeval_single
task, 5 different tasks (use datasets generated in step 1, see directory :data/semeval2014/bert-single
) should be trained separately and then evaluated together.
Evaluate the results on test set (calculate Acc, F1, etc.).
For example, BERT-pair-NLI_M task on SentiHood dataset:
python evaluation.py --task_name sentihood_NLI_M --pred_data_dir results/sentihood/NLI_M/test_ep_4.txt
Note:
- As mentioned in step 3, for
sentihood_single
task, 8 different tasks should be trained separately and then evaluated together.--pred_data_dir
should be a directory that contains 8 files named as follows:loc1_general.txt
,loc1_price.txt
,loc1_safety.txt
,loc1_transit.txt
,loc2_general.txt
,loc2_price.txt
,loc2_safety.txt
andloc2_transit.txt
- As mentioned in step 3, for
semeval_single
task, 5 different tasks should be trained separately and then evaluated together.--pred_data_dir
should be a directory that contains 5 files named as follows:price.txt
,anecdotes.txt
,food.txt
,ambience.txt
andservice.txt
- For the rest 8 tasks,
--pred_data_dir
should be a file just like that in the example.