/api-analytics

Lightweight monitoring and analytics for API frameworks.

Primary LanguageSvelte

API Analytics

A free lightweight API analytics solution, complete with a dashboard.

Currently compatible with:

  • Python: FastAPI, Flask, Django and Tornado
  • Node.js: Express, Fastify and Koa
  • Go: Gin, Echo, Fiber and Chi
  • Rust: Actix and Axum
  • Ruby: Rails and Sinatra

Getting Started

1. Generate an API key

Head to https://my-api-analytics.vercel.app/generate to generate your unique API key with a single click. This key is used to monitor your specific API and should be stored privately. It's also required in order to view your API analytics dashboard.

2. Add middleware to your API

Add our lightweight middleware to your API. Almost all processing is handled by our servers so there is minimal impact on the performance of your API.

FastAPI

PyPi version

pip install api-analytics
import uvicorn
from fastapi import FastAPI
from api_analytics.fastapi import Analytics

app = FastAPI()
app.add_middleware(Analytics, api_key=<API-KEY>)  # Add middleware

@app.get('/')
async def root():
    return {'message': 'Hello World!'}

if __name__ == "__main__":
    uvicorn.run("app:app", reload=True)

Flask

PyPi version

pip install api-analytics
from flask import Flask
from api_analytics.flask import add_middleware

app = Flask(__name__)
add_middleware(app, <API-KEY>)  # Add middleware

@app.get('/')
def root():
    return {'message': 'Hello World!'}

if __name__ == "__main__":
    app.run()

Django

PyPi version

pip install api-analytics

Assign your API key to ANALYTICS_API_KEY in settings.py and add the Analytics middleware to the top of your middleware stack.

ANALYTICS_API_KEY = <API-KEY>

MIDDLEWARE = [
    'api_analytics.django.Analytics',
    ...
]

Tornado

PyPi version

pip install api-analytics

Modify your handler to inherit from Analytics. Create a __init__() method, passing along the application and response along with your unique API key.

import asyncio
from tornado.web import Application

from api_analytics.tornado import Analytics

# Inherit from the Analytics middleware class
class MainHandler(Analytics):
    def __init__(self, app, res):
        api_key = os.environ.get("API_KEY")
        super().__init__(app, res, <API-KEY>)  # Provide api key
    
    def get(self):
        self.write({'message': 'Hello World!'})

def make_app():
    return Application([
        (r"/", MainHandler),
    ])

if __name__ == "__main__":
    app = make_app()
    app.listen(8000)
    IOLoop.instance().start()

Express

Npm package version

npm install node-api-analytics
import express from 'express';
import { expressAnalytics } from 'node-api-analytics';

const app = express();

app.use(expressAnalytics(<API-KEY>));  // Add middleware

app.get('/', (req, res) => {
    res.send({ message: 'Hello World' });
});

app.listen(8080, () => {
    console.log('Server listening at http://localhost:8080');
})

Fastify

Npm package version

npm install node-api-analytics
import Fastify from 'fastify';
import { fastifyAnalytics } from 'node-api-analytics;

const fastify = Fastify();

fastify.addHook('onRequest', fastifyAnalytics(<API-KEY>));  // Add middleware

fastify.get('/', function (request, reply) {
  reply.send({ message: 'Hello World!' });
})

fastify.listen({ port: 8080 }, function (err, address) {
  console.log('Server listening at http://localhost:8080');
  if (err) {
    fastify.log.error(err);
    process.exit(1);
  }
})

Koa

Npm package version

npm install node-api-analytics
import Koa from "koa";
import { koaAnalytics } from 'node-api-analytics';

const app = new Koa();

app.use(koaAnalytics(<API-KEY>));  // Add middleware

app.use((ctx) => {
  ctx.body = { message: 'Hello World!' };
});

app.listen(8080, () =>
  console.log('Server listening at https://localhost:8080')
);

Gin

Gin

go get -u github.com/tom-draper/api-analytics/analytics/go/gin
package main

import (
	analytics "github.com/tom-draper/api-analytics/analytics/go/gin"
	"net/http"
	"github.com/gin-gonic/gin"
)

func root(c *gin.Context) {
	jsonData := []byte(`{"message": "Hello World!"}`)
	c.Data(http.StatusOK, "application/json", jsonData)
}

func main() {
	router := gin.Default()
	
	router.Use(analytics.Analytics(<API-KEY>)) // Add middleware

	router.GET("/", root)
	router.Run("localhost:8080")
}

Echo

Echo

go get -u github.com/tom-draper/api-analytics/analytics/go/echo
package main

import (
	"net/http"
	"os"
	"github.com/labstack/echo/v4"
	analytics "github.com/tom-draper/api-analytics/analytics/go/echo"
)

func root(c echo.Context) {
	jsonData := []byte(`{"message": "Hello World!"}`)
	c.Data(http.StatusOK, "application/json", jsonData)
}

func main() {
	router := echo.New()

	router.Use(analytics.Analytics(<API-KEY>)) // Add middleware

	router.GET("/", root)
	router.Start("localhost:8080")
}

Fiber

Fiber

go get -u github.com/tom-draper/api-analytics/analytics/go/fiber
package main

import (
	"os"
	analytics "github.com/tom-draper/api-analytics/analytics/go/fiber"
	"github.com/gofiber/fiber/v2"
)

func root(c *fiber.Ctx) error {
	jsonData := []byte(`{"message": "Hello World!"}`)
	return c.SendString(string(jsonData))
}

func main() {
	app := fiber.New()

	app.Use(analytics.Analytics(<API-KEY>)) // Add middleware

	app.Get("/", root)
	app.Listen(":8080")
}

Chi

Chi

go get -u github.com/tom-draper/api-analytics/analytics/go/chi
package main

import (
	"net/http"
	"os"
	analytics "github.com/tom-draper/api-analytics/analytics/go/chi"
	chi "github.com/go-chi/chi/v5"
)

func root(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
	w.WriteHeader(http.StatusOK)
	jsonData := []byte(`{"message": "Hello World!"}`)
	w.Write(jsonData)
}

func main() {
	router := chi.NewRouter()

	router.Use(analytics.Analytics(<API-KEY>)) // Add middleware

	router.GET("/", root)
	router.Run("localhost:8080")
}

Actix

Crates.io

cargo add actix-analytics
use actix_web::{get, web, Responder, Result};
use serde::Serialize;
use actix_analytics::Analytics;

#[derive(Serialize)]
struct JsonData {
    message: String,
}

#[get("/")]
async fn index() -> Result<impl Responder> {
    let json_data = JsonData {
        message: "Hello World!".to_string(),
    };
    Ok(web::Json(json_data))
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    use actix_web::{App, HttpServer};

    HttpServer::new(|| {
        App::new()
            .wrap(Analytics::new(<API-KEY>))  // Add middleware
            .service(index)
    })
    .bind(("127.0.0.1", 8080))?
    .run()
    .await
}

Axum

Crates.io

cargo add axum-analytics
use axum::{
    routing::get,
    Json, Router,
};
use serde::Serialize;
use std::net::SocketAddr;
use tokio;
use actum_analytics::Analytics;

#[derive(Serialize)]
struct JsonData {
    message: String,
}

async fn root() -> Json<JsonData> {
    let json_data = JsonData {
        message: "Hello World!".to_string(),
    };
    Json(json_data)
}

#[tokio::main]
async fn main() {
    let app = Router::new()
        .layer(Analytics::new(<API-KEY>))  // Add middleware
        .route("/", get(root));

    let addr = SocketAddr::from(([127, 0, 0, 1], 8080));
    axum::Server::bind(&addr)
        .serve(app.into_make_service())
        .await
        .unwrap();
}

Rails

Gem version

gem install api_analytics

Add the analytics middleware to your rails application in config/application.rb.

require 'rails'
require 'api_analytics'

Bundler.require(*Rails.groups)

module RailsMiddleware
  class Application < Rails::Application
    config.load_defaults 6.1
    config.api_only = true

    config.middleware.use ::Analytics::Rails, <API-KEY>  # Add middleware
  end
end

Sinatra

Gem version

gem install api_analytics
require 'sinatra'
require 'api_analytics'

use Analytics::Sinatra, <API-KEY>  # Add middleware

before do
    content_type 'application/json'
end

get '/' do
    {message: 'Hello World!'}.to_json
end

3. View your analytics

Your API will now log and store incoming request data on all valid routes. Your logged data can be viewed using two methods:

  1. Through visualizations and statistics on our dashboard
  2. Accessed directly via our data API

You can use the same API key across multiple APIs, but all your data will appear in the same dashboard. We recommend generating a new API key for each additional API server you want analytics for.

Dashboard

Head to https://my-api-analytics.vercel.app/dashboard and paste in your API key to access your dashboard.

Demo: https://my-api-analytics.vercel.app/dashboard/demo

Dashboard

Data API

Logged data for all requests can be accessed via our REST API. Simply send a GET request to https://api-analytics-server.vercel.app/api/data with your API key set as X-AUTH-TOKEN in headers.

Python
import requests

headers = {
 "X-AUTH-TOKEN": <API-KEY>
}

response = requests.get("https://api-analytics-server.vercel.app/api/data", headers=headers)
print(response.json())
Node.js
fetch("https://api-analytics-server.vercel.app/api/data", {
  headers: { "X-AUTH-TOKEN": <API-KEY> },
})
  .then((response) => {
    return response.json();
  })
  .then((data) => {
    console.log(data);
  });
cURL
curl --header "X-AUTH-TOKEN: <API-KEY>" https://api-analytics-server.vercel.app/api/data

Monitoring (coming soon)

Opt-in active API monitoring is coming soon. Our servers will regularly ping your API endpoints to monitor uptime and response time. Optional email alerts to notify you when your endpoints are down can be subscribed to.

Monitoring

Data and Security

All data is stored securely in compliance with The EU General Data Protection Regulation (GDPR).

For any given request to your API, data recorded is limited to:

  • Path requested by client
  • Client IP address
  • Client operating system
  • Client browser
  • Request method (GET, POST, PUT, etc.)
  • Time of request
  • Status code
  • Response time
  • API hostname
  • API framework (FastAPI, Flask, Express etc.)

Data collected is only ever used to populate your analytics dashboard. All data stored is anonymous, with the API key the only link between you and your logged request data. Should you lose your API key, you will have no method to access your API analytics.

Delete Data

At any time, you can delete all stored data associated with your API key by going to https://my-api-analytics.vercel.app/delete and entering your API key.

API keys and their associated API request data are scheduled be deleted after 1 year of inactivity.

Contributions

Contributions, issues and feature requests are welcome.

  • Fork it (https://github.com/tom-draper/api-analytics)
  • Create your feature branch (git checkout -b my-new-feature)
  • Commit your changes (git commit -am 'Add some feature')
  • Push to the branch (git push origin my-new-feature)
  • Create a new Pull Request