This is the source code for: Context-aware Entity Typing in Knowledge Graphs.
- Python 3
- PyTorch >= 1.6.0
- dgl >= 0.5.3
Data preprocessing:
cd data
python preprocess.py --dataset FB15kET
python preprocess.py --dataset YAGO43kET
Train:
########### FB15kET ###########
# CET
python run.py --model CET --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --temperature 0.5 --lr 0.001 --loss FNA --beta 4.0 --cuda
# R-GCN
python run.py --model RGCN --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --beta 3.0 --cuda
# CompGCN
python run.py --model CompGCN --dataset FB15kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --activation relu --cuda
########### YAGO43kET ###########
# CET
python run.py --model CET --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --temperature 0.5 --lr 0.001 --loss FNA --beta 2.0 --cuda
# R-GCN
python run.py --model RGCN --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --beta 2.0 --cuda
# CompGCN
python run.py --model CompGCN --dataset YAGO43kET --load_ET --load_KG --neighbor_sampling \
--hidden_dim 100 --lr 0.001 --loss FNA --activation relu --cuda
The KGE baselines can be found in KGE_baselines.
We refer to the code of DGL. Thanks for their contributions.
If you find this code helpful, please kindly cite the following paper.
@inproceedings{pan-etal-2021-context-aware,
title = "Context-aware Entity Typing in Knowledge Graphs",
author = "Pan, Weiran and Wei, Wei and Mao, Xian-Ling",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.193",
doi = "10.18653/v1/2021.findings-emnlp.193",
pages = "2240--2250",
}