/Cudalab

Isolate a single CUDA environment using Docker containers on Ubuntu.

Primary LanguageDockerfile

Cudalab

Cudalab is a tool that allows you to isolate a single CUDA environment using Docker containers on Ubuntu.

Getting Started

To get started with Cudalab, follow these steps:

Build the Docker image.

Use the following command to build the Docker image:

docker build -t <image_name>:<version> .

Run the container.

Run the Docker container with the following command:

docker run --hostname ubuntu --name MyCudaLab \
--restart=always \
-p port:22 \
-itd \
--gpus '"device=1,2,3"' \
--memory=256g \
--cpuset-cpus="0-63" \
-v /path/to/data:/root/data
<image_name>:<version>

Make sure to replace <image_name> and with your desired image name and version. This command will create and run a Docker container with the specified configurations for your CUDA environment.

Feel free to customize the configurations and paths according to your specific requirements.

Example.

sudo docker run --hostname ubuntu --name MyCudaLabTest \
--restart=always \
-p 6712:22 \
-itd \
--gpus '"device=1,4"' \
--memory=256g \
--cpuset-cpus="0-63" \
-v /home/dockeruser/testWorkSpace:/root/data \
-v /home/dockeruser/miniconda3:/home/dockeruser/miniconda3 \
gxustcudatemplate:20240412

Than,

docker exec -it MyCudaLabTest bash
source /home/dockeruser/miniconda3/bin/activate

Conda and Workspace import completed!