<<<<<<< HEAD
Save average rewards for each agent per episode, and plot 'avg rewards per episode'
- Paper Actor-Attention-Critic for Multi-Agent Reinforcement Learning (Iqbal and Sha, ICML 2019)
- Original code repo : https://github.com/shariqiqbal2810/MAAC
python main.py fullobs_collect_treasure mytest1 --n_episodes 10000 --n_rollout_threads 1 --testnum 1
python plot.py --input test1.csv --which 0
-
main.py
--testnum
'testnum' option in main.py MAAC code saves the rewards totest{testnum}.csv
plot.py takes 'test{testnum}' or 'test{testnum}.csv' as an input using--input
option. -
main.py
--n_rollout_threads 1
🚨 currently only supports single process -
plot.py
--which
agent to plot
plot.py takes the agent number to plot with--which
option.
0 to plot every agents, or 1~NUMOFAGENTS to plot individual agent (NUMOFAGENTS in MAAC paper is 8)
- env: fullobs_collect_treasure
- n_episodes: 10,000
- n_rollout_threads: 10
Applying the MAAC algorithm onto Pettingzoo Environments
06f27286cc120afd90dcf43d223ab0a9b844643f