/S3Net

Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.

Primary LanguagePython

S3Net

English | 简体中文

Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.

Processd S3Net

Model framework

model

Results

Results of Stereo Matching on the US3D Test Set

cls

disp

Results of Semantic Segmentation on the US3D Test Set

cls

cls

Usage

Installation

git clone https://github.com/CVEO/S3Net.git
cd S3Net
conda env create -f environment.yml
conda activate s3net

Datasets

The dataset used in our experiment is the track-2 dataset of US3D in 2019 Data Fusion Contest

Pretrained Weights

Baidu Disk : 1111

Google Drive

Training

multi-gpu

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 multi_train.py --datapath work_directory --savepath checkpoints_directory

single-gpu

python single_train.py --datapath work_directory --savepath checkpoints_directory

Testing

python test.py --ckpt ./ckpt.tar --ImgL imgL.tif --ImgR imgR.tif

File Directory Description

S3Net 
├── example
│   ├── cls.png
│   ├── disp.png
│   ├── model.png
│   ├── table_cls.png
│   └── table_disp.png
├── data
│   ├── DFC2019Loader.py
│   └── data.py
├── model
│   └── model.py
├── README-zh_CN.md
├── README.md
├── environment.yml
├── evaluation.py
├── multi_test.py
├── test.py
├── multi_train.py
└── single_train.py

License

Code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.

Cite this work

If you find S3Net useful in your research, please consider giving a star ⭐ and citing:

@article{yang2024s3net,
    title={S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Epipolar Imagery},
    author={Yang, Qingyuan and Chen, Guanzhou and Tan, Xiaoliang and Wang, Tong and Wang, Jiaqi and Zhang, Xiaodong},
    journal={arXiv preprint arXiv:2401.01643},
    year={2024}
}

or cite the old version S2Net:

@ARTICLE{liao2024s2net,
    author={Liao, Puyun and Zhang, Xiaodong and Chen, Guanzhou and Wang, Tong and Li, Xianwei and Yang, Haobo and Zhou, Wenlin and He, Chanjuan and Wang, Qing},
    journal={IEEE Transactions on Geoscience and Remote Sensing}, 
    title={S2Net: A Multitask Learning Network for Semantic Stereo of Satellite Image Pairs}, 
    year={2024},
    volume={62},
    number={},
    pages={1-13},
    doi={10.1109/TGRS.2023.3335997}}