A Domain-Theoretic Framework for Robustness Analysis of Neural Network - lipDT
lipDT
|
|--- data
| |
| |--- MNIST
| |--- Iris_modified.csv
|
|--- IntervalBisect
| |
| |--- Interval_cpp
| |--- parameters
| |--- intervalBisect.py
| |--- IntervalCPP_ReLU_V2.cpython-38-x86_64-linux-gnu.so
| |--- MNIST01
| |--- MultiLayers
| |--- utilities.py
|
|--- OtherMethods
| |
| |--- lipMIP
| |--- other_methods (clever, fast_lip, seq_lip, naive_methods)
| |--- ZLip
| |--- CLEVER.py
|
|--- parameters
|
|--- Saved
| |--- AccuaryEfficiency
| |--- convergency
| |--- IA
| |--- MultiLayers
| |--- MyRandom
| |--- WeightBias
|
|--- accuaryEfficiency.py (run this file for accuary & efficiency experiemnts)
|
|--- convergency.py (run this file for convergency experiemnts)
|
|--- experiments.py
|--- IA.py
|
|--- multiLayers.py (run this file for multi-layers experiments)
|
|--- RE.py (run this to get relative errors in the paper table)
|
|--- README.md
|
|--- utilities.py
|
|--- weightBias.py (run this file for weight & bias experiemnts)
interval Cpp:
8289 microseconds
Interval result: 0.322705690859059757, 0.322705690859059757
interval ReLU: value - interval([0.32270569085905976]) timing - 338358000
lipMIP ReLU: value - 0.041121020913124084 timing - 10034800
ZLip ReLU: value - 0.041121020913124084 timing - 2507500
CLEVER ReLU: value - 0.2815846800804138 timing - 1054102200
FastLip ReLU: value - 0.041121020913124084 timing - 845100
NaiveUB ReLU: value - 0.6921076774597168 timing - 95900
RandomLB ReLU: value - 0.2815846800804138 timing - 137321600
SeqLip ReLU: value - 0.2129872590303421 timing - 1963200
interval Cpp:
318 microseconds
Interval result: 0.571150659783544512, 0.614485302898467367
interval ReLU: value - interval([0.5711506597835445, 0.6144853028984674]) timing - 12778100
lipMIP ReLU: value - 0.043334643114922855 timing - 9840500
ZLip ReLU: value - 0.04333464428782463 timing - 2625300
CLEVER ReLU: value - 0.04333464428782463 timing - 1102013000
FastLip ReLU: value - 0.04333464428782463 timing - 623500
NaiveUB ReLU: value - 0.7291175127029419 timing - 51100
RandomLB ReLU: value - 0.04333464428782463 timing - 143504000
SeqLip ReLU: value - 0.4503255784511566 timing - 731600
interval Cpp:
12516 microseconds
Interval result: 0.614485302898467367, 0.614485302898467367
interval ReLU: value - interval([0.6144853028984674]) timing - 543024100
lipMIP ReLU: value - 0.043334643114922855 timing - 3105500
ZLip ReLU: value - 0.04333464428782463 timing - 1516900
CLEVER ReLU: value - 0.04333464428782463 timing - 1105068400
FastLip ReLU: value - 0.04333464428782463 timing - 754100
NaiveUB ReLU: value - 0.7291175127029419 timing - 65100
RandomLB ReLU: value - 0.04333464428782463 timing - 144733500
SeqLip ReLU: value - 0.4503255784511566 timing - 565400
interval Cpp:
59 microseconds
Interval result: 3.48780926173324346, 3.48780926173324346
interval ReLU: value - interval([3.4878092617332435]) timing - 1582300
lipMIP ReLU: value - 3.4878092408180237 timing - 2395500
ZLip ReLU: value - 3.487809181213379 timing - 1100000
CLEVER ReLU: value - 3.487809181213379 timing - 1129720600
FastLip ReLU: value - 3.487809181213379 timing - 626700
NaiveUB ReLU: value - 12.569558143615723 timing - 50000
RandomLB ReLU: value - 3.487809181213379 timing - 139967700
SeqLip ReLU: value - 1.8214526176452637 timing - 749400
Using MNIST dataset.
interval Cpp:
Interval result: 0.34815343269413546, 0.34815343269413546
164040 microseconds
0
interval ReLU: value - interval([0.34815343269412385, 0.3481534326941471]) timing - 2388625100
lipMIP ReLU: value - 0.3481534055299562 timing - 33178800
ZLip ReLU: value - 0.34815341234207153 timing - 7189500
CLEVER ReLU: value - 0.3481535315513611 timing - 4308822000
FastLip ReLU: value - 0.34815341234207153 timing - 884400
NaiveUB ReLU: value - 107.7006607055664 timing - 75900
RandomLB ReLU: value - 0.3481535315513611 timing - 177969900
SeqLip ReLU: value - 0.670467323694055 timing - 4930500
- folder: Saved/AccuaryEfficiency
- folder: Saved/Convergency
- folder: Saved/MultiLayers
- IntervalBisect/Interval_cpp/test_sigmoid01
Environment & Dependency & Other information
Dependency (only for lipDT)
- Other methods:
- All codes from other methods may be modified and used in lipDT.