This repository contains the official implementation of HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction published in CVPR 2022.
1. Clone this repository:
git clone https://github.com/ZikangZhou/HiVT.git
cd HiVT
2. Create a conda environment and install the dependencies:
conda create -n HiVT python=3.8
conda activate HiVT
conda install pytorch==1.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install pytorch-geometric==1.7.2 -c rusty1s -c conda-forge
conda install pytorch-lightning==1.5.2 -c conda-forge
3. Download Argoverse Motion Forecasting Dataset v1.1. After downloading and extracting the tar.gz files, the dataset directory should be organized as follows:
/path/to/dataset_root/
├── train/
| └── data/
| ├── 1.csv
| ├── 2.csv
| ├── ...
└── val/
└── data/
├── 1.csv
├── 2.csv
├── ...
4. Install Argoverse 1 API.
To train HiVT-64:
python train.py --root /path/to/dataset_root/ --embed_dim 64
To train HiVT-128:
python train.py --root /path/to/dataset_root/ --embed_dim 128
Note: When running the training script for the first time, it will take several hours to preprocess the data (~3.5 hours on my machine). Training on an RTX 2080 Ti GPU takes 35-40 minutes per epoch.
During training, the checkpoints will be saved in lightning_logs/
automatically. To monitor the training process:
tensorboard --log_dir lightning_logs/
To evaluate the prediction performance:
python eval.py --root /path/to/dataset_root/ --batch_size 32 --ckpt_path /path/to/your_checkpoint.ckpt
We provide the pretrained HiVT-64 and HiVT-128 in checkpoints/. You can evaluate the pretrained models using the aforementioned evaluation command, or have a look at the training process via TensorBoard:
tensorboard --log_dir checkpoints/
For this repository, the expected performance on Argoverse 1.1 validation set is:
Models | minADE | minFDE | MR |
---|---|---|---|
HiVT-64 | 0.69 | 1.03 | 0.10 |
HiVT-128 | 0.66 | 0.97 | 0.09 |
If you found this repository useful, please consider citing our work:
@inproceedings{zhou2022hivt,
title={HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction},
author={Zhou, Zikang and Ye, Luyao and Wang, Jianping and Wu, Kui and Lu, Kejie},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}
This repository is licensed under Apache 2.0.