/Telecom-Churn-Prediction

In this project, data analytics is used to analyze customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn, and identify the main indicators of churn. The project focuses on a four-month window, wherein the first two months are the ‘good’ phase, the third month is the ‘action’ phase, while the fourth month is the ‘churn’ phase. The business objective is to predict the churn in the last i.e. fourth month using the data from the first three months.

Primary LanguageJupyter NotebookMIT LicenseMIT

No issues in this repository yet.