CS Independent Study @UVa
This is an independent study on the application of current machine learning techniques into Texas Hold’em AI.
-
TensorFlow documentation
# Ubuntu/Linux 64-bit $ sudo apt-get install python-pip python-dev # Ubuntu/Linux 64-bit, CPU only, Python 3.5 $ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.11.0-cp35-cp35m-linux_x86_64.whl # Mac OS X $ sudo easy_install pip3 $ sudo easy_install --upgrade six # Mac OS X, CPU only, Python 3.4 or 3.5: $ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0-py3-none-any.whl $ sudo pip3 install --upgrade $TF_BINARY_URL
-
Jupyter Notebook documentation
$ pip3 install --upgrade pip $ pip3 install jupyter $ jupyter notebook
- Machine Learning
- Framework
- Relavant Reports
- Book
- Neural Networks and Deep Learning Link
- Research Paper
- Game Theory
- prisoner dilemma game Link
- Behavior Theory
- Poker Strategy
- the Poker Bank link
- Related Course
- CS221: Artificial Intelligence
- CS6316 Machine Learning
- CS6501 Poker
- AI Strategies for Solving Poker Texas Hold'em Slides
- Others' work
Thanks Prof. David Evans for the instructions and supports.
- Current Collaborators
- Charlie Wu jw7jb@virginia.edu
- Tong Qiu tq7bw@virginia.edu