/asr_dnn_hmm

asr_dnn_hmm

Primary LanguagePython

A Deep-Learning-Based Chinese Speech Recognition System

相关资料

原理请查看本文:

训练和部署教程请看:

关于经常被问到的统计语言模型原理的问题,请看:

关于CTC的问题请看:

Introduction 简介

  • 操作步骤

首先通过Git将本项目克隆到您的计算机上,然后下载本项目训练所需要的数据集,下载链接详见文档末尾部分

$ git clone https://github.com/nl8590687/ASRT_SpeechRecognition.git

或者您也可以通过 "Fork" 按钮,将本项目Copy一份副本,然后通过您自己的SSH密钥克隆到本地。

通过git克隆仓库以后,进入项目根目录;并创建子目录 dataset/ (可使用软链接代替),然后将下载好的数据集直接解压进去

注意,当前版本中,Thchs30和ST-CMDS两个数据集都必须下载使用,缺一不可,并且使用其他数据集需要修改代码。

$ cd ASRT_SpeechRecognition

$ mkdir dataset

$ tar zxf <数据集压缩文件名> -C dataset/ 

然后需要将datalist目录下的文件全部拷贝到 dataset/ 目录下,也就是将其跟数据集放在一起。

$ cp -rf datalist/* dataset/

目前可用的模型有24、25和251

运行本项目之前,请安装必要的Python3版依赖库

本项目开始训练请执行:

$ python3 train_mspeech.py

本项目开始测试请执行:

$ python3 test_mspeech.py

测试之前,请确保代码中填写的模型文件路径存在。

ASRT API服务器启动请执行:

$ python3 asrserver.py

如果要训练和使用非251版模型,请在代码中 import SpeechModel 的相应位置做修改。

Model 模型

Speech Model 语音模型

CNN + LSTM/GRU + CTC

其中,输入的音频的最大时间长度为16秒,输出为对应的汉语拼音序列

  • 关于下载已经训练好的模型的问题

已经训练好的模型包含在发布版服务端程序压缩包里面,发布版成品服务端程序可以在此下载:下载页面

Github本仓库下Releases页面里面还包括各个不同版本的介绍信息,每个版本下方的zip压缩包也是包含已经训练好的模型的发布版服务端程序压缩包。

Language Model 语言模型

基于概率图的最大熵隐马尔可夫模型

输入为汉语拼音序列,输出为对应的汉字文本

About Accuracy 关于准确率

当前,最好的模型在测试集上基本能达到80%的汉语拼音正确率

不过由于目前国际和国内的部分团队能做到98%,所以正确率仍有待于进一步提高

Python Import

Python的依赖库

  • python_speech_features
  • TensorFlow (1.14 - 2.x)
  • Numpy
  • wave
  • matplotlib
  • math
  • Scipy
  • h5py
  • http
  • urllib
  • requests

不会安装环境的同学请直接运行以下命令(前提是有GPU且已经安装好 CUDA 10.0 和 cudnn 7.4):

$ pip install -r requirements.txt

程序运行依赖环境详细说明

Data Sets 数据集

几个最新免费开源的中文语音数据集

特别鸣谢!感谢前辈们的公开语音数据集

如果提供的数据集链接无法打开和下载,请点击该链接 OpenSLR