Nomograms serve as practical,
useful tools and communication devices in the context of clinical
decision making that enable clinicians to quickly understand and gauge
individual patients’ risk of outcomes from (potentially) complex
statistical models. The goal of QHScrnomo
is to provide functionality
to construct nomograms in
the context of time-to-event (survival) analysis in the presence of
competing risks. It also contains functions to build, validate, and
summarize these models.
You can install the development version of QHScrnomo from GitHub with:
devtools::install_github("ClevelandClinicQHS/QHScrnomo")
Or from CRAN:
install.packages("QHScrnomo")
This package has its most prominent dependencies on the
rms
package. In fact, it
actually Depends on it (see DESCRIPTION
), so that package will load
with QHScrnomo
. It also makes heavy usage of
cmprsk
and
Hmisc
(which comes with
rms
). All methodology implemented here comes from these packages, so
they should serve as a resource to further understand what is happening
behind the scenes of QHScrnomo
.
The following is an example of how to construct a nomogram from a competing risks regression model. First, we’ll load the package.
library(QHScrnomo)
#> Loading required package: rms
#> Loading required package: Hmisc
#>
#> Attaching package: 'Hmisc'
#> The following objects are masked from 'package:base':
#>
#> format.pval, units
#> Loading required package: survival
#> Loading required package: lattice
#> Loading required package: ggplot2
#> Loading required package: SparseM
#>
#> Attaching package: 'SparseM'
#> The following object is masked from 'package:base':
#>
#> backsolve
Start by fitting a Cox proportional-hazards model.
# Register the data set
dd <- datadist(prostate.dat)
options(datadist = "dd")
# Fit the Cox-PH model for prostate cancer-specific mortality
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
RACE_AA, data = prostate.dat,
x = TRUE, y= TRUE, surv=TRUE, time.inc = 144)
Then convert (adjust) it to account for the presence of competing risks.
# Refit to a competing risks regression to account for death from other causes
prostate.crr <- crr.fit(prostate.f, cencode = 0, failcode = 1)
anova(prostate.crr)
#> Wald Statistics Response: Surv(TIME_EVENT, EVENT_DOD == 1)
#>
#> Factor Chi-Square d.f. P
#> TX 5.21 2 0.0739
#> PSA 3.85 2 0.1458
#> Nonlinear 3.79 1 0.0515
#> BX_GLSN_CAT 15.29 2 0.0005
#> CLIN_STG 6.88 2 0.0320
#> AGE 9.27 2 0.0097
#> Nonlinear 1.35 1 0.2445
#> RACE_AA 3.21 1 0.0730
#> TOTAL NONLINEAR 5.16 2 0.0758
#> TOTAL 44.64 11 <.0001
We can generate cross-validated risk predictions at a particular time horizon of interest.
# Generate the cross-validated probability of the event of interest
set.seed(123)
prostate.dat$preds.tenf <- tenf.crr(prostate.crr, time = 120, trace = FALSE) # 120 = 10 years
str(prostate.dat$preds.tenf)
#> num [1:2000] 0.374 0.376 0.277 0.372 0.394 ...
And then check the discrimination of those probabilities via the concordance index.
with(prostate.dat, cindex(preds.tenf, EVENT_DOD, TIME_EVENT, type = "crr"))["cindex"]
#> cindex
#> 0.5711435
Finally, we can build the nomogram that can be used to quickly generate model predictions manually.
# Set some nice display labels (also see ?Newlevels)
prostate.g <-
Newlabels(
fit = prostate.crr,
labels =
c(
TX = "Treatment options",
PSA = "PSA (ng/mL)",
BX_GLSN_CAT = "Biopsy Gleason Score Sum",
CLIN_STG = "Clinical Stage",
AGE = "Age (Years)",
RACE_AA = "Race"
)
)
# Construct the nomogram
nomogram.crr(
fit = prostate.g,
failtime = 120,
lp = FALSE,
xfrac = 0.65,
fun.at = seq(0.2, 0.45, 0.05),
funlabel = "Predicted 10-year risk"
)