/AdaCat

AdaCat

Primary LanguagePythonMIT LicenseMIT

Adaptive Categorical Discretization (AdaCat)

AdaCat generated by DALL·E

News (08/04/2022)

We have a pip-installable package for PyTorch users (Colab demo) and JAX distrax (Colab demo) users! Website

What is in this Repo

Code for reproducing the experiments in AdaCat: Adaptive Categorical Discretization for Autoregressive Models. The codebase is organized as a collections of four different smaller codebases:

  • mnist/ -- image generation for MNIST dataset (Figure 4 and Table 2)
  • tabular/ -- generative modeling on UCI datasets (Table 1)
  • tto/ -- offline reinforcement learning on mujoco locomotion tasks (Table 4)
  • wavenet/ -- audio generation on LJSpeech dataset (Table 3)

Please refer to the README.md under each folder for commands that reproduce the experiments in the paper.

Common Setup Steps

Tested with torch==1.11.0, torchvision==0.12.0

apt-get install --no-install-recommends ffmpeg
conda create -n adacat python=3.7
conda activate adacat

pip install torch torchvision wandb numpy pandas h5py torch_ema==0.3 tqdm typed-argument-parser matplotlib ffmpeg scikit-video
pip install git+https://github.com/rail-berkeley/d4rl@master#egg=d4rl

cd tto && pip install -e . 

Citation

The bibtex is provided below for citation covenience.

@inproceedings{
li2022adacat,
title={AdaCat: Adaptive Categorical Discretization for Autoregressive Models},
author={Qiyang Li and Ajay Jain and Pieter Abbeel},
booktitle={The 38th Conference on Uncertainty in Artificial Intelligence},
year={2022},
url={https://openreview.net/forum?id=HMzzPOLs9l5}
}

Acknowledgements

The codebase is built on top of multiple publicly available repos: