Machine Learning Research Project: Landslide Early Detection from Satellite Data
Our dataset can be found at the following link
products = ReMasFrame.get_products()
Nombre | Categoría | ID | ¿Funcionando? | Link a Notebook | Resolución | Por Hacer |
---|---|---|---|---|---|---|
goes17:fulldisk:v1 | weather |
products['weather']['goes'] |
NO | Notebook Link | NA | NA |
GSOD Daily Interpolation Weather Product | weather |
products['weather']['gsod'] |
SI | Notebook Link | 0.1 | NA |
CHIRPS Daily Precipitation Weather | weather |
products['weather']['chirps'] |
SI | Notebook Link | 0.05 | create stack |
NCEP CFS-v2 Derived Daily Weather Product | weather |
products['weather']['cfs'] |
SI | Notebook Link | 0.20 | TODO |
smap:SMPL3SM_E | soil_moist |
products['soil_moist']['smap'] |
SI | Notebook Link | 0.1 | NA |
aster:gdem3:v0 | elevation |
products['eleveation']['asger'] |
SI | Notebook Link | 0.001 | NA |
GPW_Population_Density_V4_01 | population |
products['population']['population'] |
SI | Notebook Link | NA | NA |
VisMet Data | weather |
products['weather']['vismet'] |
NO | Notebook Link | NA | to product |
products = ReMasFrame.get_products()
buffer_size = 0.1
0.1 deg
10km
box de 10kmx10km aprox.
If you have been given access to the GCP project projectx-uch
, you can find the compute instances.
- url :
https://console.cloud.google.com/storage/browser/data-projectx/processed_data
!pip install fsspec
!pip install gcsfs
import fsspec
fs = fsspec.get_mapper('gcs://data-projectx/')
# show files
print(list(fs))
# access files
with fs.open(path, mode='rb', cache_type='readahead') as f:
use_for_something(f)
- Tutorial access see notebook example (TODO)
- ffsspec docs
- url : Workbench
Gives access to satellite data and
Workbench
(4vCPUs, 13GB~RAM, optional GPU)
If you need to access use your given email (usually an academic one)