/Landslide_EarlyDetection

Machine Learning Research Project: Landslide Risk based Early Detection

Primary LanguageJupyter Notebook

Landslide EarlyDetection

Binder

Machine Learning Research Project: Landslide Early Detection from Satellite Data

Data

Our dataset can be found at the following link

products = ReMasFrame.get_products()

Nombre Categoría ID ¿Funcionando? Link a Notebook Resolución Por Hacer
goes17:fulldisk:v1
weather
products['weather']['goes']
NO Notebook Link NA NA
GSOD Daily Interpolation Weather Product
weather
products['weather']['gsod']
SI Notebook Link 0.1 NA
CHIRPS Daily Precipitation Weather
weather
products['weather']['chirps']
SI Notebook Link 0.05 create stack
NCEP CFS-v2 Derived Daily Weather Product
weather
products['weather']['cfs']
SI Notebook Link 0.20 TODO
smap:SMPL3SM_E
soil_moist
products['soil_moist']['smap']
SI Notebook Link 0.1 NA
aster:gdem3:v0
elevation
products['eleveation']['asger']
SI Notebook Link 0.001 NA
GPW_Population_Density_V4_01
population
products['population']['population']
SI Notebook Link NA NA
VisMet Data
weather
products['weather']['vismet']
NO Notebook Link NA to product
1 : Actual id is `d15c019579fa0985f7006094bba7c7288f830e1f:GPW_Population_Density_V4_0`

Recordatorios:

products = ReMasFrame.get_products()

buffer_size = 0.1 0.1 deg 10km box de 10kmx10km aprox.

Google Compute Engine

Instance

If you have been given access to the GCP project projectx-uch, you can find the compute instances.

Bucket

  • url : https://console.cloud.google.com/storage/browser/data-projectx/processed_data
!pip install fsspec
!pip install gcsfs

import fsspec

fs = fsspec.get_mapper('gcs://data-projectx/')

# show files
print(list(fs))

# access files
with fs.open(path, mode='rb', cache_type='readahead') as f:
  use_for_something(f)

DescartesLab

  • url : Workbench Gives access to satellite data and Workbench (4vCPUs, 13GB~RAM, optional GPU)

Credentials

If you need to access use your given email (usually an academic one)