This is a collection of research papers for world model
- Wolrd Model
|- Generalization
|- Dynamic Modeling
|- Representation Learning
- Utilities
- Language Models Meet World Models, Zhiting Hu, Tianmin Shu, Neurips 2023, slides, pdf
- A Survey of Reinforcement Learning Informed by Natural Language, Jelena Luketina1, Nantas Nardelli, Gregory Farquhar, Tim Rocktäschel et al.
- Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning, Lin Guan, Karthik Valmeekam, Sarath Sreedharan, Subbarao Kambhampati, Neurips 2023
- Language Models Meet World Models: Embodied Experiences Enhance Language Models, Jiannan Xiang, Tianhua Tao, et al., Neurips 2023
- Iso-Dream: Isolating Noncontrollable Visual Dynamics in World Models, Minting Pan, Xiangming Zhu, Yunbo Wang, Xiaokang Yang, Neurips 2022, link
- dreamer, disentangle, background generalization.
- DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations, Fei Deng, Ingook Jang, Sungjin Ahn, ICML 2022, link
- dreamer, SwAV, representation enhancement.
-
Transformers are Sample-Efficient World Models, Vincent Micheli, Eloi Alonso, François Fleuret, preprint 2022, link
- dreamer, discrete, atari
-
TransDreamer: Reinforcement Learning with Transformer World Models, Chang Chen, Yi-Fu Wu, Jaesik Yoon, Sungjin Ahn, preprint 2022, link
-
Dreaming with Transformers. Catherine Zeng, Jordan Docter, Alexander Amini, Igor Gilitschenski, Ramin Hasani, Daniela Rus, AAAI 2022, Workshop on Reinforcement Learning in Games, link
- Masked World Models for Visual Control. Younggyo Seo, Danijar Hafner, Hao Liu, Fangcheng Liu, Stephen James, Kimin Lee, Pieter Abbeel. CoRL 2022. link
- dreamer, mae, representation learning.
- Dynamic Update-to-Data Ratio: Minimizing World Model Overfitting. Under Reveiw. ICLR 2023. link
- Unsupervised Learning of Visual Featuresby Contrasting Cluster Assignments, Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, Armand Joulin, Neurips 2020 link
- SwAV, unsupervised pre-training, contrastive, prototypes.