Transform how AI understands code through graph-native semantic intelligence.
# Clone this repository
git clone --recursive https://github.com/Consiliency/codegraph
cd codegraph
# Start the development environment
./scripts/start-dev.sh
# Run the demo
./scripts/demo.sh- Docker 20.10+
- Docker Compose 2.0+
- Node.js 18+
- Python 3.11+
- 16GB RAM recommended
- 20GB free disk space
βββββββββββββββ βββββββββββββββ βββββββββββββββ
β Browser ββββββΆβ TypeScript ββββββΆβ Python β
β (Dashboard) β β API β β Analysis β
βββββββββββββββ βββββββββββββββ βββββββββββββββ
β β
βΌ βΌ
βββββββββββββββ βββββββββββββββ
β Memgraph β β Qdrant β
β (Graph) β β (Vectors) β
βββββββββββββββ βββββββββββββββ
codegraph-core: High-performance C++ engine (Tree-sitter, BLAKE3)codegraph-api: TypeScript GraphQL/REST API servercodegraph-analysis: Python ML workflows and analysiscodegraph-proto: Protocol Buffer definitionscodegraph-deploy: Docker compose and infrastructure
-
Clone and setup:
git clone --recursive https://github.com/Consiliency/codegraph cd codegraph cp .env.example .env # Edit .env and add your OpenAI API key
-
Start services:
./scripts/start-dev.sh
-
Access the system:
- Dashboard: http://localhost:4000/dashboard/
- GraphQL: http://localhost:4000/graphql
- Memgraph: http://localhost:3000
- β Multi-language AST parsing (Python, JavaScript, TypeScript)
- β Graph-based code representation
- β Semantic search with OpenAI embeddings
- β Real-time monitoring dashboard
- β Protocol buffer communication
- β 70% LLM token reduction (projected)
See CONTRIBUTING.md for development guidelines.
Apache License 2.0