/labwc

A Wayland stacking compositor

Primary LanguageCGNU General Public License v2.0GPL-2.0

labwc

1. Project Description

1.1 What Is This?

Labwc stands for Lab Wayland Compositor, where lab can mean any of the following:

  • sense of experimentation and treading new ground
  • inspired by BunsenLabs and ArchLabs
  • your favorite pet

Labwc is a wlroots-based window-stacking compositor for wayland, inspired by openbox.

It is light-weight and independent with a focus on simply stacking windows well and rendering some window decorations. It takes a no-bling/frills approach and says no to features such as icons (except window buttons), animations, decorative gradients and any other options not required to reasonably render common themes. It relies on clients for panels, screenshots, wallpapers and so on to create a full desktop environment.

Labwc tries to stay in keeping with wlroots and sway in terms of general approach and coding style.

Labwc has no reliance on any particular Desktop Environment, Desktop Shell or session. Nor does it depend on any UI toolkits such as Qt or GTK.

1.2 Why?

Firstly, we believe that there is a need for a simple Wayland window-stacking compositor which strikes a balance between minimalism and bloat approximately at the level where Window Managers like Openbox reside in the X11 domain. Most of the core developers are accustomed to low resource Desktop Environments such as Mate/XFCE or standalone Window Managers such as Openbox under X11. Labwc aims to make a similar setup possible under Wayland, with small and independent components rather than a large, integrated software eco-system.

Secondly, the Wayland community has achieved an amazing amount so far, and we want to help solve the unsolved problems to make Wayland viable for more people. We think that standardisation and de-fragmentation is a route to greater Wayland adoption, and wanting to play our part in this, Labwc only understands wayland-protocols & wlr-protocols, and it cannot be controlled with dbus, sway/i3/custom-IPC or other technology.

Thirdly, it is important to us that scope is tightly controlled so that the compositor matures to production quality. On the whole, we value robustness, reliability, stability and simplicity over new features. Coming up with new ideas and features is easy - maintaining and stabilising them is not.

Fourthly, we are of the view that a compositor should be boring in order to do its job well. In this regard we follow in the footsteps of metacity which describes itself as a "Boring window manager for the adult in you. Many window managers are like Marshmallow Froot Loops; Metacity is like Cheerios."

Finally, we think that an elegant solution to all of this does not need feel square and pixelated like something out of the 1990s, but should look contemporary and enable cutting-edge performance.

1.3 Why The Openbox Theme Specification?

In order to avoid reinventing configuration and theme syntaxes, the openbox 3.6 specification is used. This does not mean that labwc is an openbox clone but rather that configuration files will look and feel familiar.

Also, parsing GTK3+ and Qt themes for window decorations is very complicated, so using much simpler specs such as those used by openbox and xfwm makes sense for a compositor such as labwc, both in terms of implementation and for user modification.

Openbox spec is somewhat of a stable standard considering how long it has remained unchanged for and how wide-spread its adoption is by lightweight distributions such as LXDE, LXQt, BunsenLabs, ArchLabs, Mabox and Raspian. Some widely used themes (for example Numix and Arc) have built-in support.

We could have invented a whole new syntax, but that's not where we want to spend our effort.

1.4 Very High Level Scope

A lot of emphasis is put on code simplicity when considering features.

The main development effort is focused on producing a solid foundation for a stacking compositor rather than adding configuration and theming options.

See scope for full details on implemented features.

High-level summary of items that Labwc supports:

  • Config files (rc.xml, autostart, environment, menu.xml)
  • Theme files and xbm icons
  • Basic desktop and client menus
  • HiDPI
  • wlroots protocols such as output-management, layer-shell and foreign-toplevel
  • Optionally xwayland

Items which are not intended to be implemented:

  • Icons (except window buttons)
  • Animations
  • Gradients for decoration and menus
  • Any theme option not required to reasonably render common themes (it is amazing how few options are actually required).

1.5 Videos

video link date content
Video (2:48) 31-Oct-2022 0.6.0 release video
Video (1:10) 05-Aug-2021 window gymnastics, theming and waybar
Video (3:42) 25-Feb-2021 setting background and themes; xwayland/xdg-shell windows

1.6 Screenshot

The obligatory screenshot:

2. Build and Installation

To build, simply run:

meson setup build/
meson compile -C build/

Run-time dependencies include:

  • wlroots, wayland, libinput, xkbcommon
  • libxml2, cairo, pango, glib-2.0
  • xwayland, xcb (optional)

Build dependencies include:

  • meson, ninja, gcc/clang
  • wayland-protocols

Disable xwayland with meson -Dxwayland=disabled build/

For OS/distribution specific details see see wiki.

3. Configuration

For a step-by-step initial configuration guide, see getting-started

User config files are located at ${XDG_CONFIG_HOME:-$HOME/.config/labwc/} with the following four files being used:

file man page
rc.xml labwc-config(5), labwc-actions(5)
menu.xml labwc-menu(5)
autostart labwc(1)
environment labwc-config(5)
themerc-override labwc-theme(5)

The example rc.xml has been kept simple. For all options and default values, see rc.xml.all

Configuration and theme files are reloaded on receiving SIGHUP (e.g. killall -s SIGHUP labwc)

For keyboard settings, see environment and xkeyboard-config(7)

4. Theming

Themes are located at ~/.local/share/themes/\<theme-name\>/openbox-3/ or equivalent XDG_DATA_{DIRS,HOME} location in accordance with freedesktop XDG directory specification.

For full theme options, see labwc-theme(5) or the themerc example file.

For themes, search the internet for "openbox themes" and place them in ~/.local/share/themes/. Some good starting points include:

5. Usage

./build/labwc [-s <command>]

NOTE: If you are running on NVIDIA, you will need the nvidia-drm.modeset=1 kernel parameter.

If you have not created an rc.xml config file, default bindings will be:

combination action
alt-tab activate next window
super-return alacritty
alt-F3 bemenu
alt-F4 close window
super-a toggle maximize
alt-mouse-left move window
alt-mouse-right resize window
alt-arrow move window to edge
super-arrow resize window to fill half the output
XF86_AudioLowerVolume amixer sset Master 5%-
XF86_AudioRaiseVolume amixer sset Master 5%+
XF86_AudioMute amixer sset Master toggle
XF86_MonBrightnessUp brightnessctl set +10%
XF86_MonBrightnessDown brightnessctl set 10%-

A root-menu can be opened by clicking on the desktop.

5.1 Gaming

It is suggested to use a nested gamescope instance for gaming until labwc implements proper cursor confinement.
It can be added to steam via game launch option: gamescope -f -- %command%.

6. Integration

Suggested apps to use with labwc:

See integration for further details.