/mcumgr-ios

A mobile management library for devices running Apache Mynewt and Zephyr (DFU, logs, stats, config, etc.)

Primary LanguageSwiftApache License 2.0Apache-2.0

McuManager iOS

A transport agnostic implementation of the McuManager protocol (aka Newt Manager (NMP), Simple Management Protocol (SMP)) for iOS.

Install

CocoaPods

pod 'McuManager', '~> 0.10.0'

Carthage

github "JuulLabs-OSS/mcumgr-ios" ~> 0.10.0

Introduction

McuManager is an application layer protocol used to manage and monitor microcontrollers running Apache Mynewt and Zephyr. More specifically, McuManagr implements over-the-air (OTA) firmware upgrades, log and stat collection, and file-system and configuration management.

Command Groups

McuManager are organized by functionality into command groups. In mcumgr-ios, command groups are called managers and extend the McuManager class. The managers (groups) implemented in mcumgr-ios are:

  • DefaultManager: Contains commands relevant to the OS. This includes task and memory pool statistics, device time read & write, and device reset.
  • ImageManager: Manage image state on the device and perform image uploads.
  • StatsManager: Read stats from the device.
  • ConfigManager: Read/Write config values on the device.
  • LogManager: Collect logs from the device.
  • CrashManager: Run crash tests on the device.
  • RunTestManager: Runs tests on the device.
  • FileSystemManager: Download/upload files from the device file system.

Firmware Upgrade

Firmware upgrade is generally a four step process performed using commands from the image and default commands groups: upload, test, reset, and confirm.

This library provides a FirmwareUpgradeManager as a convinience for upgrading the image running on a device.

FirmwareUpgradeManager

A FirmwareUpgradeManager provides an easy way to perform firmware upgrades on a device. A FirmwareUpgradeManager must be initialized with an McuMgrTransport which defines the transport scheme and device. Once initialized, a FirmwareUpgradeManager can perform one firmware upgrade at a time. Firmware upgrades are started using the start(data: Data) method and can be paused, resumed, and canceled using pause(), resume(), and cancel() respectively.

Example

// Initialize the BLE transporter using a scanned peripheral
let bleTransport = McuMgrBleTransport(cbPeripheral)

// Initialize the FirmwareUpgradeManager using the transport and a delegate
let dfuManager = FirmwareUpgradeManager(bleTransport, delegate)

// Start the firmware upgrade with the image data
dfuManager.start(data: imageData)

Firmware Upgrade Mode

McuManager firmware upgrades can actually be performed in few different ways. These different upgrade modes determine the commands sent after the upload step. The FirmwareUpgradeManager can be configured to perform these upgrade variations by setting the mode property. The different firmware upgrade modes are as follows:

  • .testAndConfirm: This mode is the default and recommended mode for performing upgrades due to it's ability to recover from a bad firmware upgrade. The process for this mode is upload, test, reset, confirm.
  • .confirmOnly: This mode is not recommended. If the device fails to boot into the new image, it will not be able to recover and will need to be re-flashed. The process for this mode is upload, confirm, reset.
  • .testOnly: This mode is useful if you want to run tests on the new image running before confirming it manually as the primary boot image. The process for this mode is upload, test, reset.

Firmware Upgrade State

FirmwareUpgradeManager acts as a simple, mostly linear state machine which is determined by the mode. As the manager moves through the firmware upgrade process, state changes are provided through the FirmwareUpgradeDelegate's upgradeStateDidChange method.

The FirmwareUpgradeManager contains an additional state, validate, which precedes the upload. The validate state checks the current image state of the device in an attempt to bypass certain states of the firmware upgrade. For example, if the image to upgrade to already exists in slot 1 on the device, the FirmwareUpgradeManager will skip upload and move directly to test (or confirm if .confirmOnly mode has been set) from validate. If the uploaded image is already active, and confirmed in slot 0, the upgrade will succeed immediately. In short, the validate state makes it easy to reattempt an upgrade without needing to re-upload the image or manually determine where to start.

Logging

Setting logDelegate property in a manager gives access to low level logs, that can help debugging both the app and your device. Messages are logged on 6 log levels, from .debug to .error, and additionally contain a McuMgrLogCategory, which identifies the originating component. Additionally, the logDelegate property of McuMgrBleTransport provides access to the BLE Transport logs.

Example

// Initialize the BLE transporter using a scanned peripheral
let bleTransport = McuMgrBleTransport(cbPeripheral)
bleTransporter.logDelegate = UIApplication.shared.delegate as? McuMgrLogDelegate

// Initialize the DeviceManager using the transport and a delegate
let deviceManager = DeviceManager(bleTransport, delegate)
deviceManager.logDelegate = UIApplication.shared.delegate as? McuMgrLogDelegate

// Send acho
deviceManger.echo("Hello World!", callback)

OSLog integration

McuMgrLogDelegate can be easily integrated with unified logging system. An example is provided in the example app in the AppDelegate.swift. A McuMgrLogLevel extension that can be found in that file translates the log level to one of OSLogType levels. Similarly, McuMgrLogCategory extension converts the category to OSLog type.

Developing for McuManager

Clone the repository, install pods.

git clone https://github.com/JuulLabs-OSS/mcumgr-ios.git
cd mcumgr-ios/Example
pod install

In Xcode (or other IDE) open the mcumgr-ios/Example/Example.xcworkspace. The development pod for McuManager should be under Pods -> Development Pods -> McuManager.