tqdm
derives from the Arabic word taqaddum (تقدّم) which can mean "progress,"
and is an abbreviation for "I love you so much" in Spanish (te quiero demasiado).
Instantly make your loops show a smart progress meter - just wrap any
iterable with tqdm(iterable)
, and you're done!
from tqdm import tqdm
for i in tqdm(range(10000)):
...
76%|████████████████████████ | 7568/10000 [00:33<00:10, 229.00it/s]
trange(N)
can be also used as a convenient shortcut for
tqdm(xrange(N))
.
It can also be executed as a module with pipes:
$ seq 9999999 | tqdm --bytes | wc -l
75.2MB [00:00, 217MB/s]
9999999
$ tar -zcf - docs/ | tqdm --bytes --total `du -sb docs/ | cut -f1` \
> backup.tgz
32%|██████████▍ | 8.89G/27.9G [00:42<01:31, 223MB/s]
Overhead is low -- about 60ns per iteration (80ns with tqdm.gui
), and is
unit tested against performance regression.
By comparison, the well-established
ProgressBar has
an 800ns/iter overhead.
In addition to its low overhead, tqdm
uses smart algorithms to predict
the remaining time and to skip unnecessary iteration displays, which allows
for a negligible overhead in most cases.
tqdm
works on any platform
(Linux, Windows, Mac, FreeBSD, NetBSD, Solaris/SunOS),
in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks.
tqdm
does not require any dependencies (not even curses
!), just
Python and an environment supporting carriage return \r
and
line feed \n
control characters.
Table of contents
pip install tqdm
Pull and install in the current directory:
pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
conda install -c conda-forge tqdm
There are 3 channels to choose from:
snap install tqdm # implies --stable, i.e. latest tagged release
snap install tqdm --candidate # master branch
snap install tqdm --edge # devel branch
Note than snap
binaries are purely for CLI use (not import
-able), and
automatically set up bash
tab-completion.
docker pull tqdm/tqdm
docker run -i --rm tqdm/tqdm --help
There are other (unofficial) places where tqdm
may be downloaded, particularly for CLI use:
The list of all changes is available either on GitHub's Releases: , on the wiki, on the website, or on crawlers such as allmychanges.com.
tqdm
is very versatile and can be used in a number of ways.
The three main ones are given below.
Wrap tqdm()
around any iterable:
from tqdm import tqdm
from time import sleep
text = ""
for char in tqdm(["a", "b", "c", "d"]):
sleep(0.25)
text = text + char
trange(i)
is a special optimised instance of tqdm(range(i))
:
from tqdm import trange
for i in trange(100):
sleep(0.01)
Instantiation outside of the loop allows for manual control over tqdm()
:
pbar = tqdm(["a", "b", "c", "d"])
for char in pbar:
sleep(0.25)
pbar.set_description("Processing %s" % char)
Manual control of tqdm()
updates using a with
statement:
with tqdm(total=100) as pbar:
for i in range(10):
sleep(0.1)
pbar.update(10)
If the optional variable total
(or an iterable with len()
) is
provided, predictive stats are displayed.
with
is also optional (you can just assign tqdm()
to a variable,
but in this case don't forget to del
or close()
at the end:
pbar = tqdm(total=100)
for i in range(10):
sleep(0.1)
pbar.update(10)
pbar.close()
Perhaps the most wonderful use of tqdm
is in a script or on the command
line. Simply inserting tqdm
(or python -m tqdm
) between pipes will pass
through all stdin
to stdout
while printing progress to stderr
.
The example below demonstrated counting the number of lines in all Python files in the current directory, with timing information included.
$ time find . -name '*.py' -type f -exec cat \{} \; | wc -l
857365
real 0m3.458s
user 0m0.274s
sys 0m3.325s
$ time find . -name '*.py' -type f -exec cat \{} \; | tqdm | wc -l
857366it [00:03, 246471.31it/s]
857365
real 0m3.585s
user 0m0.862s
sys 0m3.358s
Note that the usual arguments for tqdm
can also be specified.
$ find . -name '*.py' -type f -exec cat \{} \; |
tqdm --unit loc --unit_scale --total 857366 >> /dev/null
100%|█████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]
Backing up a large directory?
tar -zcf - docs/ | tqdm --bytes --total `du -sb docs/ | cut -f1` \
> backup.tgz
44%|██████████████▊ | 153M/352M [00:14<00:18, 11.0MB/s]
This can be beautified further:
BYTES="$(du -sb docs/ | cut -f1)"
tar -cf - docs/ \
| tqdm --bytes --total "$BYTES" --desc Processing | gzip \
| tqdm --bytes --total "$BYTES" --desc Compressed --position 1 \
> ~/backup.tgz
Processing: 100%|██████████████████████| 352M/352M [00:14<00:00, 30.2MB/s]
Compressed: 42%|█████████▎ | 148M/352M [00:14<00:19, 10.9MB/s]
Or done on a file level using 7-zip:
7z a -bd -r backup.7z docs/ | grep Compressing \
| tqdm --total $(find docs/ -type f | wc -l) --unit files \
| grep -v Compressing
100%|██████████████████████████▉| 15327/15327 [01:00<00:00, 712.96files/s]
The most common issues relate to excessive output on multiple lines, instead of a neat one-line progress bar.
- Consoles in general: require support for carriage return (
CR
,\r
). - Nested progress bars:
- Unicode:
- Environments which report that they support unicode will have solid smooth
progressbars. The fallback is an
`ascii
-only bar. - Windows consoles often only partially support unicode and thus often require explicit ascii=True (also here). This is due to either normal-width unicode characters being incorrectly displayed as "wide", or some unicode characters not rendering.
- Environments which report that they support unicode will have solid smooth
progressbars. The fallback is an
- Wrapping generators:
- Generator wrapper functions tend to hide the length of iterables.
tqdm
does not. - Replace
tqdm(enumerate(...))
withenumerate(tqdm(...))
ortqdm(enumerate(x), total=len(x), ...)
. The same applies tonumpy.ndenumerate
. - Replace
tqdm(zip(a, b))
withzip(tqdm(a), b)
or evenzip(tqdm(a), tqdm(b))
. - The same applies to
itertools
. - Some useful convenience functions can be found under
tqdm.contrib
.
- Generator wrapper functions tend to hide the length of iterables.
- Hanging pipes in python2:
when using
tqdm
on the CLI, you may need to use Python 3.5+ for correct buffering.
If you come across any other difficulties, browse and file .
class tqdm():
"""
Decorate an iterable object, returning an iterator which acts exactly
like the original iterable, but prints a dynamically updating
progressbar every time a value is requested.
"""
def __init__(self, iterable=None, desc=None, total=None, leave=True,
file=None, ncols=None, mininterval=0.1,
maxinterval=10.0, miniters=None, ascii=None, disable=False,
unit='it', unit_scale=False, dynamic_ncols=False,
smoothing=0.3, bar_format=None, initial=0, position=None,
postfix=None, unit_divisor=1000):
- iterable : iterable, optional
Iterable to decorate with a progressbar. Leave blank to manually manage the updates.
- desc : str, optional
Prefix for the progressbar.
- total : int or float, optional
The number of expected iterations. If unspecified, len(iterable) is used if possible. If float("inf") or as a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If
gui
is True and this parameter needs subsequent updating, specify an initial arbitrary large positive number, e.g. 9e9.
- leave : bool, optional
If [default: True], keeps all traces of the progressbar upon termination of iteration. If
None
, will leave only ifposition
is0
.
- file :
io.TextIOWrapper
orio.StringIO
, optional Specifies where to output the progress messages (default: sys.stderr). Uses
file.write(str)
andfile.flush()
methods. For encoding, seewrite_bytes
.
- file :
- ncols : int, optional
The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If unspecified, attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats).
- mininterval : float, optional
Minimum progress display update interval [default: 0.1] seconds.
- maxinterval : float, optional
Maximum progress display update interval [default: 10] seconds. Automatically adjusts
miniters
to correspond tomininterval
after long display update lag. Only works ifdynamic_miniters
or monitor thread is enabled.
- miniters : int or float, optional
Minimum progress display update interval, in iterations. If 0 and
dynamic_miniters
, will automatically adjust to equalmininterval
(more CPU efficient, good for tight loops). If > 0, will skip display of specified number of iterations. Tweak this andmininterval
to get very efficient loops. If your progress is erratic with both fast and slow iterations (network, skipping items, etc) you should set miniters=1.
- ascii : bool or str, optional
If unspecified or False, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters " 123456789#".
- disable : bool, optional
Whether to disable the entire progressbar wrapper [default: False]. If set to None, disable on non-TTY.
- unit : str, optional
String that will be used to define the unit of each iteration [default: it].
- unit_scale : bool or int or float, optional
If 1 or True, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. If any other non-zero number, will scale
total
andn
.
- dynamic_ncols : bool, optional
If set, constantly alters
ncols
andnrows
to the environment (allowing for window resizes) [default: False].
- smoothing : float, optional
Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3].
- bar_format : str, optional
Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ' '{rate_fmt}{postfix}]' Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, elapsed, elapsed_s, ncols, nrows, desc, unit, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, postfix, unit_divisor, remaining, remaining_s. Note that a trailing ": " is automatically removed after {desc} if the latter is empty.
- initial : int or float, optional
The initial counter value. Useful when restarting a progress bar [default: 0]. If using float, consider specifying
{n:.3f}
or similar inbar_format
, or specifyingunit_scale
.
- position : int, optional
Specify the line offset to print this bar (starting from 0) Automatic if unspecified. Useful to manage multiple bars at once (eg, from threads).
- postfix : dict or
*
, optional Specify additional stats to display at the end of the bar. Calls
set_postfix(**postfix)
if possible (dict).
- postfix : dict or
- unit_divisor : float, optional
[default: 1000], ignored unless
unit_scale
is True.
- write_bytes : bool, optional
If (default: None) and
file
is unspecified, bytes will be written in Python 2. IfTrue
will also write bytes. In all other cases will default to unicode.
- lock_args : tuple, optional
Passed to
refresh
for intermediate output (initialisation, iterating, and updating).
- nrows : int, optional
The screen height. If specified, hides nested bars outside this bound. If unspecified, attempts to use environment height. The fallback is 20.
- delim : chr, optional
- Delimiting character [default: 'n']. Use '0' for null. N.B.: on Windows systems, Python converts 'n' to 'rn'.
- buf_size : int, optional
- String buffer size in bytes [default: 256]
used when
delim
is specified.
- bytes : bool, optional
- If true, will count bytes, ignore
delim
, and defaultunit_scale
to True,unit_divisor
to 1024, andunit
to 'B'.
- manpath : str, optional
- Directory in which to install tqdm man pages.
- comppath : str, optional
- Directory in which to place tqdm completion.
- log : str, optional
- CRITICAL|FATAL|ERROR|WARN(ING)|[default: 'INFO']|DEBUG|NOTSET.
- out : decorated iterator.
class tqdm():
def update(self, n=1):
"""
Manually update the progress bar, useful for streams
such as reading files.
E.g.:
>>> t = tqdm(total=filesize) # Initialise
>>> for current_buffer in stream:
... ...
... t.update(len(current_buffer))
>>> t.close()
The last line is highly recommended, but possibly not necessary if
``t.update()`` will be called in such a way that ``filesize`` will be
exactly reached and printed.
Parameters
----------
n : int or float, optional
Increment to add to the internal counter of iterations
[default: 1]. If using float, consider specifying ``{n:.3f}``
or similar in ``bar_format``, or specifying ``unit_scale``.
"""
def close(self):
"""Cleanup and (if leave=False) close the progressbar."""
def clear(self, nomove=False):
"""Clear current bar display."""
def refresh(self):
"""
Force refresh the display of this bar.
Parameters
----------
nolock : bool, optional
If ``True``, does not lock.
If [default: ``False``]: calls ``acquire()`` on internal lock.
lock_args : tuple, optional
Passed to internal lock's ``acquire()``.
If specified, will only ``display()`` if ``acquire()`` returns ``True``.
"""
def unpause(self):
"""Restart tqdm timer from last print time."""
def reset(self, total=None):
"""
Resets to 0 iterations for repeated use.
Consider combining with ``leave=True``.
Parameters
----------
total : int or float, optional. Total to use for the new bar.
"""
def set_description(self, desc=None, refresh=True):
"""
Set/modify description of the progress bar.
Parameters
----------
desc : str, optional
refresh : bool, optional
Forces refresh [default: True].
"""
def set_postfix(self, ordered_dict=None, refresh=True, **kwargs):
"""
Set/modify postfix (additional stats)
with automatic formatting based on datatype.
Parameters
----------
ordered_dict : dict or OrderedDict, optional
refresh : bool, optional
Forces refresh [default: True].
kwargs : dict, optional
"""
@classmethod
def write(cls, s, file=sys.stdout, end="\n"):
"""Print a message via tqdm (without overlap with bars)."""
@property
def format_dict(self):
"""Public API for read-only member access."""
def display(self, msg=None, pos=None):
"""
Use ``self.sp`` to display ``msg`` in the specified ``pos``.
Consider overloading this function when inheriting to use e.g.:
``self.some_frontend(**self.format_dict)`` instead of ``self.sp``.
Parameters
----------
msg : str, optional. What to display (default: ``repr(self)``).
pos : int, optional. Position to ``moveto``
(default: ``abs(self.pos)``).
"""
def trange(*args, **kwargs):
"""
A shortcut for tqdm(xrange(*args), **kwargs).
On Python3+ range is used instead of xrange.
"""
class tqdm.gui.tqdm(tqdm.tqdm):
"""Experimental GUI version"""
def tqdm.gui.trange(*args, **kwargs):
"""Experimental GUI version of trange"""
class tqdm.notebook.tqdm(tqdm.tqdm):
"""Experimental IPython/Jupyter Notebook widget"""
def tqdm.notebook.trange(*args, **kwargs):
"""Experimental IPython/Jupyter Notebook widget version of trange"""
class tqdm.keras.TqdmCallback(keras.callbacks.Callback):
"""`keras` callback for epoch and batch progress"""
def tqdm.contrib.tenumerate(iterable, start=0, total=None,
tqdm_class=tqdm.auto.tqdm, **kwargs):
"""Equivalent of `numpy.ndenumerate` or builtin `enumerate`."""
def tqdm.contrib.tzip(iter1, *iter2plus, **tqdm_kwargs):
"""Equivalent of builtin `zip`."""
def tqdm.contrib.tmap(function, *sequences, **tqdm_kwargs):
"""Equivalent of builtin `map`."""
The tqdm.contrib
package also contains experimental modules:
tqdm.contrib.itertools
: Thin wrappers arounditertools
tqdm.contrib.concurrent
: Thin wrappers aroundconcurrent.futures
tqdm.contrib.telegram
: Posts to Telegram bots
- See the examples folder;
- import the module and run
help()
; - consult the wiki;
- this has an excellent article on how to make a great progressbar;
- check out the slides from PyData London, or
- run the or .
Custom information can be displayed and updated dynamically on tqdm
bars
with the desc
and postfix
arguments:
from tqdm import tqdm, trange
from random import random, randint
from time import sleep
with trange(10) as t:
for i in t:
# Description will be displayed on the left
t.set_description('GEN %i' % i)
# Postfix will be displayed on the right,
# formatted automatically based on argument's datatype
t.set_postfix(loss=random(), gen=randint(1,999), str='h',
lst=[1, 2])
sleep(0.1)
with tqdm(total=10, bar_format="{postfix[0]} {postfix[1][value]:>8.2g}",
postfix=["Batch", dict(value=0)]) as t:
for i in range(10):
sleep(0.1)
t.postfix[1]["value"] = i / 2
t.update()
Points to remember when using {postfix[...]}
in the bar_format
string:
postfix
also needs to be passed as an initial argument in a compatible format, andpostfix
will be auto-converted to a string if it is adict
-like object. To prevent this behaviour, insert an extra item into the dictionary where the key is not a string.
Additional bar_format
parameters may also be defined by overriding
format_dict
, and the bar itself may be modified using ascii
:
from tqdm import tqdm
class TqdmExtraFormat(tqdm):
"""Provides a `total_time` format parameter"""
@property
def format_dict(self):
d = super(TqdmExtraFormat, self).format_dict
total_time = d["elapsed"] * (d["total"] or 0) / max(d["n"], 1)
d.update(total_time=self.format_interval(total_time) + " in total")
return d
for i in TqdmExtraFormat(
range(9), ascii=" .oO0",
bar_format="{total_time}: {percentage:.0f}%|{bar}{r_bar}"):
if i == 4:
break
00:00 in total: 44%|0000. | 4/9 [00:00<00:00, 962.93it/s]
Note that {bar}
also supports a format specifier [width][type]
.
width
- unspecified (default): automatic to fill
ncols
int >= 0
: fixed width overridingncols
logicint < 0
: subtract from the automatic default
- unspecified (default): automatic to fill
type
a
: ascii (ascii=True
override)u
: unicode (ascii=False
override)b
: blank (ascii=" "
override)
This means a fixed bar with right-justified text may be created by using:
bar_format="{l_bar}{bar:10}|{bar:-10b}right-justified"
tqdm
supports nested progress bars. Here's an example:
from tqdm.auto import trange
from time import sleep
for i in trange(4, desc='1st loop'):
for j in trange(5, desc='2nd loop'):
for k in trange(50, desc='3rd loop', leave=False):
sleep(0.01)
On Windows colorama will be used if available to keep nested bars on their respective lines.
For manual control over positioning (e.g. for multi-processing use),
you may specify position=n
where n=0
for the outermost bar,
n=1
for the next, and so on.
However, it's best to check if tqdm can work without manual position first.
from time import sleep
from tqdm import trange, tqdm
from multiprocessing import Pool, freeze_support
L = list(range(9))
def progresser(n):
interval = 0.001 / (n + 2)
total = 5000
text = "#{}, est. {:<04.2}s".format(n, interval * total)
for _ in trange(total, desc=text, position=n):
sleep(interval)
if __name__ == '__main__':
freeze_support() # for Windows support
p = Pool(initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))
p.map(progresser, L)
Note that in Python 3, tqdm.write
is thread-safe:
from time import sleep
from tqdm import tqdm, trange
from concurrent.futures import ThreadPoolExecutor
L = list(range(9))
def progresser(n):
interval = 0.001 / (n + 2)
total = 5000
text = "#{}, est. {:<04.2}s".format(n, interval * total)
for _ in trange(total, desc=text):
sleep(interval)
if n == 6:
tqdm.write("n == 6 completed.")
tqdm.write("`tqdm.write()` is thread-safe in py3!")
if __name__ == '__main__':
with ThreadPoolExecutor() as p:
p.map(progresser, L)
tqdm
can easily support callbacks/hooks and manual updates.
Here's an example with urllib
:
``urllib.urlretrieve`` documentation
[...]If present, the hook function will be called onceon establishment of the network connection and once after each block readthereafter. The hook will be passed three arguments; a count of blockstransferred so far, a block size in bytes, and the total size of the file.[...]
import urllib, os
from tqdm import tqdm
class TqdmUpTo(tqdm):
"""Provides `update_to(n)` which uses `tqdm.update(delta_n)`."""
def update_to(self, b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks transferred so far [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n) # will also set self.n = b * bsize
eg_link = "https://caspersci.uk.to/matryoshka.zip"
with TqdmUpTo(unit='B', unit_scale=True, unit_divisor=1024, miniters=1,
desc=eg_link.split('/')[-1]) as t: # all optional kwargs
urllib.urlretrieve(eg_link, filename=os.devnull,
reporthook=t.update_to, data=None)
t.total = t.n
Inspired by twine#242. Functional alternative in examples/tqdm_wget.py.
It is recommend to use miniters=1
whenever there is potentially
large differences in iteration speed (e.g. downloading a file over
a patchy connection).
Wrapping read/write methods
To measure throughput through a file-like object's read
or write
methods, use CallbackIOWrapper
:
from tqdm.auto import tqdm
from tqdm.utils import CallbackIOWrapper
with tqdm(total=file_obj.size,
unit='B', unit_scale=True, unit_divisor=1024) as t:
fobj = CallbackIOWrapper(t.update, file_obj, "read")
while True:
chunk = fobj.read(chunk_size)
if not chunk:
break
t.reset()
# ... continue to use `t` for something else
Alternatively, use the even simpler wrapattr
convenience function,
which would condense both the urllib
and CallbackIOWrapper
examples
down to:
import urllib, os
from tqdm import tqdm
eg_link = "https://caspersci.uk.to/matryoshka.zip"
with tqdm.wrapattr(open(os.devnull, "wb"), "write",
miniters=1, desc=eg_link.split('/')[-1]) as fout:
for chunk in urllib.urlopen(eg_link):
fout.write(chunk)
The requests
equivalent is nearly identical, albeit with a total
:
import requests, os
from tqdm import tqdm
eg_link = "https://caspersci.uk.to/matryoshka.zip"
response = requests.get(eg_link, stream=True)
with tqdm.wrapattr(open(os.devnull, "wb"), "write",
miniters=1, desc=eg_link.split('/')[-1],
total=response.headers.get('content-length')) as fout:
for chunk in response.iter_content(chunk_size=4096):
fout.write(chunk)
Due to popular demand we've added support for pandas
-- here's an example
for DataFrame.progress_apply
and DataFrameGroupBy.progress_apply
:
import pandas as pd
import numpy as np
from tqdm import tqdm
df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))
# Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm`
# (can use `tqdm.gui.tqdm`, `tqdm.notebook.tqdm`, optional kwargs, etc.)
tqdm.pandas(desc="my bar!")
# Now you can use `progress_apply` instead of `apply`
# and `progress_map` instead of `map`
df.progress_apply(lambda x: x**2)
# can also groupby:
# df.groupby(0).progress_apply(lambda x: x**2)
In case you're interested in how this works (and how to modify it for your
own callbacks), see the
examples
folder or import the module and run help()
.
A keras
callback is also available:
from tqdm.keras import TqdmCallback
...
model.fit(..., verbose=0, callbacks=[TqdmCallback()])
IPython/Jupyter is supported via the tqdm.notebook
submodule:
from tqdm.notebook import trange, tqdm
from time import sleep
for i in trange(3, desc='1st loop'):
for j in tqdm(range(100), desc='2nd loop'):
sleep(0.01)
In addition to tqdm
features, the submodule provides a native Jupyter
widget (compatible with IPython v1-v4 and Jupyter), fully working nested bars
and colour hints (blue: normal, green: completed, red: error/interrupt,
light blue: no ETA); as demonstrated below.
The notebook
version supports percentage or pixels for overall width
(e.g.: ncols='100%'
or ncols='480px'
).
It is also possible to let tqdm
automatically choose between
console or notebook versions by using the autonotebook
submodule:
from tqdm.autonotebook import tqdm
tqdm.pandas()
Note that this will issue a TqdmExperimentalWarning
if run in a notebook
since it is not meant to be possible to distinguish between jupyter notebook
and jupyter console
. Use auto
instead of autonotebook
to suppress
this warning.
Note that notebooks will display the bar in the cell where it was created. This may be a different cell from the one where it is used. If this is not desired, the creation of the bar must be delayed/moved to the cell where it is desired to be displayed.
Another possibility is to have a single bar (near the top of the notebook)
which is constantly re-used (using reset()
rather than close()
).
For this reason, the notebook version (unlike the CLI version) does not
automatically call close()
upon Exception
.
from tqdm.notebook import tqdm
pbar = tqdm()
# different cell
iterable = range(100)
pbar.reset(total=len(iterable)) # initialise with new `total`
for i in iterable:
pbar.update()
pbar.refresh() # force print final status but don't `close()`
To change the default arguments (such as making dynamic_ncols=True
),
simply use built-in Python magic:
from functools import partial
from tqdm import tqdm as std_tqdm
tqdm = partial(std_tqdm, dynamic_ncols=True)
For further customisation,
tqdm
may be inherited from to create custom callbacks (as with the
TqdmUpTo
example above) or for custom frontends
(e.g. GUIs such as notebook or plotting packages). In the latter case:
def __init__()
to callsuper().__init__(..., gui=True)
to disable terminalstatus_printer
creation.- Redefine:
close()
,clear()
,display()
.
Consider overloading display()
to use e.g.
self.frontend(**self.format_dict)
instead of self.sp(repr(self))
.
tqdm/notebook.py and tqdm/gui.py submodules are examples of inheritance which don't (yet) strictly conform to the above recommendation.
You can use a tqdm
as a meter which is not monotonically increasing.
This could be because n
decreases (e.g. a CPU usage monitor) or total
changes.
One example would be recursively searching for files. The total
is the
number of objects found so far, while n
is the number of those objects which
are files (rather than folders):
from tqdm import tqdm
import os.path
def find_files_recursively(path, show_progress=True):
files = []
# total=1 assumes `path` is a file
t = tqdm(total=1, unit="file", disable=not show_progress)
if not os.path.exists(path):
raise IOError("Cannot find:" + path)
def append_found_file(f):
files.append(f)
t.update()
def list_found_dir(path):
"""returns os.listdir(path) assuming os.path.isdir(path)"""
listing = os.listdir(path)
# subtract 1 since a "file" we found was actually this directory
t.total += len(listing) - 1
# fancy way to give info without forcing a refresh
t.set_postfix(dir=path[-10:], refresh=False)
t.update(0) # may trigger a refresh
return listing
def recursively_search(path):
if os.path.isdir(path):
for f in list_found_dir(path):
recursively_search(os.path.join(path, f))
else:
append_found_file(path)
recursively_search(path)
t.set_postfix(dir=path)
t.close()
return files
Using update(0)
is a handy way to let tqdm
decide when to trigger a
display refresh to avoid console spamming.
This is a work in progress (see #737).
Since tqdm
uses a simple printing mechanism to display progress bars,
you should not write any message in the terminal using print()
while
a progressbar is open.
To write messages in the terminal without any collision with tqdm
bar
display, a .write()
method is provided:
from tqdm.auto import tqdm, trange
from time import sleep
bar = trange(10)
for i in bar:
# Print using tqdm class method .write()
sleep(0.1)
if not (i % 3):
tqdm.write("Done task %i" % i)
# Can also use bar.write()
By default, this will print to standard output sys.stdout
. but you can
specify any file-like object using the file
argument. For example, this
can be used to redirect the messages writing to a log file or class.
If using a library that can print messages to the console, editing the library
by replacing print()
with tqdm.write()
may not be desirable.
In that case, redirecting sys.stdout
to tqdm.write()
is an option.
To redirect sys.stdout
, create a file-like class that will write
any input string to tqdm.write()
, and supply the arguments
file=sys.stdout, dynamic_ncols=True
.
A reusable canonical example is given below:
from time import sleep
import contextlib
import sys
from tqdm import tqdm
from tqdm.contrib import DummyTqdmFile
@contextlib.contextmanager
def std_out_err_redirect_tqdm():
orig_out_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = map(DummyTqdmFile, orig_out_err)
yield orig_out_err[0]
# Relay exceptions
except Exception as exc:
raise exc
# Always restore sys.stdout/err if necessary
finally:
sys.stdout, sys.stderr = orig_out_err
def some_fun(i):
print("Fee, fi, fo,".split()[i])
# Redirect stdout to tqdm.write() (don't forget the `as save_stdout`)
with std_out_err_redirect_tqdm() as orig_stdout:
# tqdm needs the original stdout
# and dynamic_ncols=True to autodetect console width
for i in tqdm(range(3), file=orig_stdout, dynamic_ncols=True):
sleep(.5)
some_fun(i)
# After the `with`, printing is restored
print("Done!")
tqdm
implements a few tricks to to increase efficiency and reduce overhead.
- Avoid unnecessary frequent bar refreshing:
mininterval
defines how long to wait between each refresh.tqdm
always gets updated in the background, but it will display only everymininterval
. - Reduce number of calls to check system clock/time.
mininterval
is more intuitive to configure thanminiters
. A clever adjustment systemdynamic_miniters
will automatically adjustminiters
to the amount of iterations that fit into timemininterval
. Essentially,tqdm
will check if it's time to print without actually checking time. This behaviour can be still be bypassed by manually settingminiters
.
However, consider a case with a combination of fast and slow iterations.
After a few fast iterations, dynamic_miniters
will set miniters
to a
large number. When iteration rate subsequently slows, miniters
will
remain large and thus reduce display update frequency. To address this:
maxinterval
defines the maximum time between display refreshes. A concurrent monitoring thread checks for overdue updates and forces one where necessary.
The monitoring thread should not have a noticeable overhead, and guarantees
updates at least every 10 seconds by default.
This value can be directly changed by setting the monitor_interval
of
any tqdm
instance (i.e. t = tqdm.tqdm(...); t.monitor_interval = 2
).
The monitor thread may be disabled application-wide by setting
tqdm.tqdm.monitor_interval = 0
before instantiation of any tqdm
bar.
All source code is hosted on GitHub. Contributions are welcome.
See the CONTRIBUTING file for more information.
Developers who have made significant contributions, ranked by SLoC
(surviving lines of code,
git fame -wMC
),
are:
Name | ID | SLoC | Notes |
---|---|---|---|
Casper da Costa-Luis | casperdcl | ~75% | primary maintainer |
Stephen Larroque | lrq3000 | ~15% | team member |
Martin Zugnoni | martinzugnoni | ~3% | |
Guangshuo Chen | chengs | ~1% | |
Hadrien Mary | hadim | ~1% | team member |
Matthew Stevens | mjstevens777 | ~1% | |
Noam Yorav-Raphael | noamraph | ~1% | original author |
Kyle Altendorf | altendky | ~1% | |
Ivan Ivanov | obiwanus | ~1% | |
James E. King III | jeking3 | ~1% | |
Mikhail Korobov | kmike | ~1% | team member |
A list is available on this wiki page.