- author is leilei
- fire-detection qq群: 980489677
- 如果此项目对您有所帮助,请给个star,您的star是对我的鼓励!
- 工作服反光衣数据集: 可用于施工区域or危险区域等指定区域检测: reflective-clothes-detect-dataset
- En: Open source again smoke-fire detection data 10827 sheets (including 2059 labels):
- Ch: 再次开源烟雾-火灾检测数据10827张(含2059个标注),仍然需要下载 latest-fire-dataset合并:
- BaiDuYunPan_Download 提取码->(hhwq)
- latest-fire-dataset (with xml annotations 2059) download: BaiDuYunPan 提取码->(3q4r) GoogleDrive
- fire-yolov4-weights download: BaiDuYunPan 提取码->(w3ip)
- darknet-yolov4-install-tutorial
- yolov4.conv.137 -> GoogleDriver download: yolov4.conv.137
- Darknet has updated part of the code, so my code is not suitable for the latest darknet, please refer to the current darknet_images.py file.
- Darknet已更新了部分代码,因此我的代码不适用于最新的Darknet,请参考当前的darknet_images.py文件。
- We annotate the fire-detection-dataset as Pascal VOC format:
--VOC2020 --Annotations (xml_num: 2059) --ImageSets(Main) --JPEGImages (image_num: 2059) --label_name: fire
- Unzip **.tar file command
请不要再问我如何解压! tar -xzvf ***.tar (win or linux: Git Bash) or 7zip (win: 7zip; 360zip need 2 time unzip)
- If you want to convert VOC to YOLO format:
Call darknet-yolov4's scripts voc_label.py
- Fire scene:
vehicle-fire、grassland-fire、forest-fire、building-fire、Big and small fire、Day and night fire;
- Crawl fire-smoke images
* crawl baidu images: test_baidu.py * crawl google images: test_google.py
- installed darknet-yolov4, and put darknet_API.py into ./darknet
- put cfg into ./darknet
- download fire-yolov4's weight, and put it in backup_fire folder
- Call the darknet_API main function:
from darknet_API import Detect detect = Detect(metaPath=r'./cfg/fire.data', configPath=r'./cfg/yolov4-fire.cfg',\ weightPath=r'./backup_fire/yolov4-fire_best.weights',\ namesPath=r'./cfg/fire.names') image = cv2.imread(r'/home/Datasets/20200714085948.jpg', -1) draw_img = detect.predict_image(image, save_path='./pred.jpg')
- The latest version of darknet has modified darknet.py and can directly perform image detection based on it.
- Note:
- This project should be placed in the ./darknet folder;
- Fire generally coexists with smoke, but we only marked fire;
- In addition, it is easy to confuse the negative sample of the fire and the light;
- Convert VOC format data to YOLO format data
- Configure file information such as cfg
- Call the darknet command:
./darknet detector train cfg/fire.data cfg/yolov4-fire.cfg yolov4.conv.137 -gpus 0 -map -dont_show
- ./result: fire-detect demos
- ./xml_lab: fire-detection image annotations
- train_data contain 1-2-3-4:
- train_data1: https://blog.csdn.net/LEILEI18A/article/details/107334474
- train_data2: https://bitbucket.org/gbdi/bowfire-dataset/downloads/
- train_data3: https://github.com/OlafenwaMoses/FireNET/releases/download/v1.0/fire-dataset.zip
- train_data4: https://github.com/cair/Fire-Detection-Image-Dataset/blob/master/Fire%20images.rar
- fire-demo-dataset: http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html
- google云盘下载链接由qq群中小伙伴提供
- This data set contains 2 parts:
- (1) Images crawled by myself, marked by myself
- (2) The data that others open source, some have annotations, some have no annotations (I re-annotate it)
- 本数据仅学术探索!!!