/LyDROO

Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

Primary LanguagePythonMIT LicenseMIT

LyDROO

Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:

  • memory.py: the codes of Deep Reinforcement Learning based on fully connected neural networks (DNN) implemented on PyTorch.

  • memoryTF2conv.py: the codes of Deep Reinforcement Learning based on convolutional neural networks (CNN) implemented on Tenforflow 2.

  • ResourceAllocation: Algorithms for resource allocation.

  • LyDROO.py: run this file for LyDROO with DNN implemented on PyTorch.

  • LyDROOwithTF2conv.py: run this file for LyDROO with CNN implemented on Tenforflow 2.

Cite this work

  1. Suzhi Bi, Liang Huang, and Ying-jun Angela Zhang, ``Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks'', IEEE Transactions on Wireless Communications, 2021, doi:10.1109/TWC.2021.3085319.
@ARTICLE{bi2021LyDROO,  
  author={Bi, Suzhi and Huang, Liang and Wang, Hui and Zhang, Ying-Jun Angela},
  journal={IEEE Transactions on Wireless Communications},
  title={Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks},
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TWC.2021.3085319}
}

About authors

How the code works