miniSNV is a lightweight SNV calling algorithm that simultaneously achieves high performance and yield. miniSNV takes the known common variants in the population as variation backgrounds and leverages read pileup, read-based phasing, and consensus generation to discover and genotype SNVs for ONT long reads. Benchmarks on real ONT datasets under various error profiles demonstrate that miniSNV has superior sensitivity and comparable accuracy on SNV detection and runs faster with outstanding scaling performance and lower memory than most state-of-the-art variant callers.
1.download index folder at here
2.install whatshap :
conda install bioconda::whatshap
or
conda install bioconda/label/cf201901::whatshap
3.download miniSNV
git clone https://github.com/CuiMiao-HIT/miniSNV.git
cd miniSNV/Release
make -j 12
cd ..
python chr_chunk_task.py \
--fin_ref FIN_REF \
--fin_bam FIN_BAM \
--workDir WORKDIR
Required parameters:
-b, --fin_bam BAM file input. The input file must be samtools indexed.
-r, --fin_ref FASTA reference file input. The input file must be samtools indexed.
-o, --workDir Work-directory for distributed job.
Other parameters:
--useindex add it if ues index.
-i, --fin_index The folder path containing a miniSNV index(five files in the folder).
--human add it if human bam.
-hb, --homo_bed HOMO Bed format input.
-db, --dup_bed DUP HOMO Bed format input.
--threads(INT) Number of threads to use.(default : 16)
--chrName list of chrName (contig names) to be processed, separeted by comma without any blank space.
--sample Sample name in vcf file.(default : SAMPLE)
--chunkWidth(INT) Reference length to detect candidate in one loop.(default : 10000000)
--read_Ratio(FLOAT) read_Ratio.baseQ.(default : 0.98)
--baseQ(INT) baseQ.(default :13)
Please post on Github Issue or contact cuimiao@stu.hit.edu.cn.