/Slide-SAM

Primary LanguagePythonApache License 2.0Apache-2.0

Slide-SAM: Medical SAM meets sliding window

image

Quan Quan1,2*, Fenghe Tang3*, Zikang Xu3, Heqin Zhu3, S.Kevin Zhou1,2,3
1 Institute of Computing Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences
3 School of Biomedical Engineering, University of Science and Technology of China
* Equal Contribution 

arXiv github License: Apache2.0

TODOs

  • Paper released
  • Code released
  • Slide-SAM-B weights released
  • Slide-SAM-H weights released

Models

Large scale Medical Image Pretrained Weights

Name Resolution Prompt Weights
Slide-SAM-B 1024 x 1024 box & point Google Drive | Baidu Disk (7be9)
Slide-SAM-H 1024 x 1024 box & point Google Drive | Baidu Disk (05dy)

Getting Started

Install tutils tools

pip install trans-utils

Prepare datasets

We recommend you to convert the dataset into the nnUNet format.

00_custom_dataset
  imagesTr
    xxx_0000.nii.gz
    ...
  labelsTr
    xxx.nii.gz
    ...

Try to use the function organize in nnunet-style or organize_by_names to prepare your custom datasets.

Then run :

python -m  datasets.generate_txt

A [example]_train.txt will be generated in ./datasets/dataset_list/

The content should be like below

01_BCV-Abdomen/Training/img/img0001.nii.gz	01_BCV-Abdomen/Training/label/label0001.nii.gz
01_BCV-Abdomen/Training/img/img0002.nii.gz	01_BCV-Abdomen/Training/label/label0002.nii.gz
01_BCV-Abdomen/Training/img/img0003.nii.gz	01_BCV-Abdomen/Training/label/label0003.nii.gz

Cache 3d volume into slices

After generating the [example]_train.txt file, check the config file configs/vit_b.yaml.

Update the params in dataset by yours. And the dataset_list should be the name of the generated txt file [example].

Then run

python -m datasets.cache_dataset3d

Configs Settings

important settings

base:
  base_dir: "../runs/sam/" # logging dir

dataset:
  types: ['3d'] # ['3d', '2d']
  split: 'train'
  data_root_path: '../datasets/' 
  dataset_list: ["pancreas"]
  data_txt_path: './datasets/dataset_list/'
  dataset2d_path: "../08_AbdomenCT-1K/"
  cache_data_path: '../cached_dataset2/'

  cache_prefix: ['6016'] # cache prefix of cached dataset for training
  # For example: ['07',] for 07_WORD

Start Training from scratch (SAM)

Run training on multi-gpu

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m core.ddp --tag debug

Run training on single-gpu

CUDA_VISIBLE_DEVICES=0 python -m core.ddp --tag debug

Sliding Inference and Test

python -m core.volume_predictor

Testset Validation

EX_CONFIG = {       
        'dataset':{
            'prompt': 'box', # prompt type: box or point
            'dataset_list': ['word'], # dataset_list name
            'label_idx': 2, # label index for inference, 
        },       
        "pth": "./model.pth"
    }
python -m test.volume_eval

Finetuning (Recommended)

training:
  breakpoint_path: "./model.pth" # pretrained weight path
python -m core.ddp_sub --tag run

Validation with Finetuned Weights

  python -m test.volume_eval_sublora
EX_CONFIG = {       
        'dataset':{
            'prompt': 'box', # prompt type: box or point
            'dataset_list': ['word'], # dataset_list name
            'label_idx': 2, # label index for inference, 
        },       
        "pth": "./model_finetuned.pth"
    }

Citation

If the code, paper and weights help your research, please cite:

@article{quan2023slide,
  title={Slide-SAM: Medical SAM Meets Sliding Window},
  author={Quan, Quan and Tang, Fenghe and Xu, Zikang and Zhu, Heqin and Zhou, S Kevin},
  journal={arXiv preprint arXiv:2311.10121},
  year={2023}
}

License

This project is released under the Apache 2.0 license. Please see the LICENSE file for more information.