The datacontract
CLI is an open source command-line tool for working with Data Contracts.
It uses data contract YAML files to lint the data contract, connect to data sources and execute schema and quality tests, detect breaking changes, and export to different formats. The tool is written in Python. It can be used as a standalone CLI tool, in a CI/CD pipeline, or directly as a Python library.
Let's look at this data contract: https://datacontract.com/examples/orders-latest/datacontract.yaml
We have a servers section with endpoint details to the S3 bucket, models for the structure of the data, and quality attributes that describe the expected freshness and number of rows.
This data contract contains all information to connect to S3 and check that the actual data meets the defined schema and quality requirements. We can use this information to test if the actual data set in S3 is compliant to the data contract.
Let's use pip to install the CLI (or use the Docker image, if you prefer).
$ python3 -m pip install datacontract-cli
We run the tests:
$ datacontract test https://datacontract.com/examples/orders-latest/datacontract.yaml
# returns:
Testing https://datacontract.com/examples/orders-latest/datacontract.yaml
╭────────┬─────────────────────────────────────────────────────────────────────┬───────────────────────────────┬─────────╮
│ Result │ Check │ Field │ Details │
├────────┼─────────────────────────────────────────────────────────────────────┼───────────────────────────────┼─────────┤
│ passed │ Check that JSON has valid schema │ orders │ │
│ passed │ Check that JSON has valid schema │ line_items │ │
│ passed │ Check that field order_id is present │ orders │ │
│ passed │ Check that field order_timestamp is present │ orders │ │
│ passed │ Check that field order_total is present │ orders │ │
│ passed │ Check that field customer_id is present │ orders │ │
│ passed │ Check that field customer_email_address is present │ orders │ │
│ passed │ row_count >= 5000 │ orders │ │
│ passed │ Check that required field order_id has no null values │ orders.order_id │ │
│ passed │ Check that unique field order_id has no duplicate values │ orders.order_id │ │
│ passed │ duplicate_count(order_id) = 0 │ orders.order_id │ │
│ passed │ Check that required field order_timestamp has no null values │ orders.order_timestamp │ │
│ passed │ freshness(order_timestamp) < 24h │ orders.order_timestamp │ │
│ passed │ Check that required field order_total has no null values │ orders.order_total │ │
│ passed │ Check that required field customer_email_address has no null values │ orders.customer_email_address │ │
│ passed │ Check that field lines_item_id is present │ line_items │ │
│ passed │ Check that field order_id is present │ line_items │ │
│ passed │ Check that field sku is present │ line_items │ │
│ passed │ values in (order_id) must exist in orders (order_id) │ line_items.order_id │ │
│ passed │ row_count >= 5000 │ line_items │ │
│ passed │ Check that required field lines_item_id has no null values │ line_items.lines_item_id │ │
│ passed │ Check that unique field lines_item_id has no duplicate values │ line_items.lines_item_id │ │
╰────────┴─────────────────────────────────────────────────────────────────────┴───────────────────────────────┴─────────╯
🟢 data contract is valid. Run 22 checks. Took 6.739514 seconds.
Voilà, the CLI tested that the datacontract.yaml itself is valid, all records comply with the schema, and all quality attributes are met.
# create a new data contract from example and write it to datacontract.yaml
$ datacontract init datacontract.yaml
# lint the datacontract.yaml
$ datacontract lint datacontract.yaml
# execute schema and quality checks
$ datacontract test datacontract.yaml
# execute schema and quality checks on the examples within the contract
$ datacontract test --examples datacontract.yaml
# find differences between to data contracts (Coming Soon)
$ datacontract diff datacontract-v1.yaml datacontract-v2.yaml
# fail pipeline on breaking changes (Coming Soon)
$ datacontract breaking datacontract-v1.yaml datacontract-v2.yaml
# export model as jsonschema
$ datacontract export --format jsonschema datacontract.yaml
# export model as dbt
$ datacontract export --format dbt datacontract.yaml
# import sql
$ datacontract import --format sql --source my_ddl.sql
# import protobuf as model (Coming Soon)
$ datacontract import --format protobuf --source my_protobuf_file.proto datacontract.yaml
from datacontract.data_contract import DataContract
data_contract = DataContract(data_contract_file="datacontract.yaml")
run = data_contract.test()
if not run.has_passed():
print("Data quality validation failed.")
# Abort pipeline, alert, or take corrective actions...
If you use Data Mesh Manager, you can use the data contract URL and append the --publish
option to send and display the test results. Set an environment variable for your API key.
# Fetch current data contract, execute tests on production, and publish result to data mesh manager
$ EXPORT DATAMESH_MANAGER_API_KEY=xxx
$ datacontract test https://demo.datamesh-manager.com/demo279750347121/datacontracts/4df9d6ee-e55d-4088-9598-b635b2fdcbbc/datacontract.yaml --server production --publish
Choose the most appropriate installation method for your needs:
Python 3.11 recommended. Python 3.12 available as pre-release release candidate for 0.9.3
python3 -m pip install datacontract-cli
pipx installs into an isolated environment.
pipx install datacontract-cli
docker pull datacontract/cli
docker run --rm -v ${PWD}:/home/datacontract datacontract/cli
Or via an alias that automatically uses the latest version:
alias datacontract='docker run --rm -v "${PWD}:/home/datacontract" datacontract/cli:latest'
Data Contract CLI can connect to data sources and run schema and quality tests to verify that the data contract is valid.
$ datacontract test --server production datacontract.yaml
To connect to the databases the server
block in the datacontract.yaml is used to set up the connection. In addition, credentials, such as username and passwords, may be defined with environment variables.
The application uses different engines, based on the server type
.
Type | Format | Description | Status | Engines |
---|---|---|---|---|
s3 |
parquet |
Works for any S3-compliant endpoint., e.g., AWS S3, GCS, MinIO, Ceph, ... | ✅ | soda-core-duckdb |
s3 |
json |
Support for new_line delimited JSON files and one JSON record per file. |
✅ | fastjsonschema soda-core-duckdb |
s3 |
csv |
✅ | soda-core-duckdb | |
s3 |
delta |
Coming soon | TBD | |
postgres |
n/a | ✅ | soda-core-postgres | |
snowflake |
n/a | ✅ | soda-core-snowflake | |
bigquery |
n/a | ✅ | soda-core-bigquery | |
redshift |
n/a | Coming soon | TBD | |
databricks |
n/a | Support for Databricks SQL with Unity catalog and Hive metastore. | ✅ | soda-core-spark |
databricks |
n/a | Support for Spark for programmatic use in Notebooks. | ✅ | soda-core-spark-df |
kafka |
json |
Experimental. | ✅ | pyspark soda-core-spark-df |
kafka |
avro |
Coming soon | TBD | |
kafka |
protobuf |
Coming soon | TBD | |
local |
parquet |
✅ | soda-core-duckdb | |
local |
json |
Support for new_line delimited JSON files and one JSON record per file. |
✅ | fastjsonschema soda-core-duckdb |
local |
csv |
✅ | soda-core-duckdb |
Feel free to create an issue, if you need support for an additional type.
Data Contract CLI can test data that is stored in S3 buckets or any S3-compliant endpoints in various formats.
datacontract.yaml
servers:
production:
type: s3
endpointUrl: https://minio.example.com # not needed with AWS S3
location: s3://bucket-name/path/*/*.json
format: json
delimiter: new_line # new_line, array, or none
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_S3_REGION |
eu-central-1 |
Region of S3 bucket |
DATACONTRACT_S3_ACCESS_KEY_ID |
AKIAXV5Q5QABCDEFGH |
AWS Access Key ID |
DATACONTRACT_S3_SECRET_ACCESS_KEY |
93S7LRrJcqLaaaa/XXXXXXXXXXXXX |
AWS Secret Access Key |
Data Contract CLI can test data in Postgres or Postgres-compliant databases (e.g., RisingWave).
datacontract.yaml
servers:
postgres:
type: postgres
host: localhost
port: 5432
database: postgres
schema: public
models:
my_table_1: # corresponds to a table
type: table
fields:
my_column_1: # corresponds to a column
type: varchar
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_POSTGRES_USERNAME |
postgres |
Username |
DATACONTRACT_POSTGRES_PASSWORD |
mysecretpassword |
Password |
Data Contract CLI can test data in Snowflake.
datacontract.yaml
servers:
snowflake:
type: snowflake
account: abcdefg-xn12345
database: ORDER_DB
schema: ORDERS_PII_V2
models:
my_table_1: # corresponds to a table
type: table
fields:
my_column_1: # corresponds to a column
type: varchar
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_SNOWFLAKE_USERNAME |
datacontract |
Username |
DATACONTRACT_SNOWFLAKE_PASSWORD |
mysecretpassword |
Password |
DATACONTRACT_SNOWFLAKE_ROLE |
DATAVALIDATION |
The snowflake role to use. |
DATACONTRACT_SNOWFLAKE_WAREHOUSE |
COMPUTE_WH |
The Snowflake Warehouse to use executing the tests. |
We support authentication to BigQuery using Service Account Key. The used Service Account should include the roles:
- BigQuery Job User
- BigQuery Data Viewer
datacontract.yaml
servers:
production:
type: bigquery
project: datameshexample-product
dataset: datacontract_cli_test_dataset
models:
datacontract_cli_test_table: # corresponds to a BigQuery table
type: table
fields: ...
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_BIGQUERY_ACCOUNT_INFO_JSON_PATH |
~/service-access-key.json |
Service Access key as saved on key creation by BigQuery |
Works with Unity Catalog and Hive metastore.
Needs a running SQL warehouse or compute cluster.
datacontract.yaml
servers:
production:
type: databricks
host: dbc-abcdefgh-1234.cloud.databricks.com
catalog: acme_catalog_prod
schema: orders_latest
models:
orders: # corresponds to a table
type: table
fields: ...
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_DATABRICKS_TOKEN |
dapia00000000000000000000000000000 |
The personal access token to authenticate |
DATACONTRACT_DATABRICKS_HTTP_PATH |
/sql/1.0/warehouses/b053a3ffffffff |
The HTTP path to the SQL warehouse or compute cluster |
Works with Unity Catalog and Hive metastore.
When running in a notebook or pipeline, the provided spark
session can be used.
An additional authentication is not required.
Requires a Databricks Runtime with Python >= 3.10.
datacontract.yaml
servers:
production:
type: databricks
host: dbc-abcdefgh-1234.cloud.databricks.com # ignored, always use current host
catalog: acme_catalog_prod
schema: orders_latest
models:
orders: # corresponds to a table
type: table
fields: ...
Notebook
%pip install datacontract-cli
dbutils.library.restartPython()
from datacontract.data_contract import DataContract
data_contract = DataContract(
data_contract_file="/Volumes/acme_catalog_prod/orders_latest/datacontract/datacontract.yaml",
spark=spark)
run = data_contract.test()
run.result
Kafka support is currently considered experimental.
datacontract.yaml
servers:
production:
type: kafka
host: abc-12345.eu-central-1.aws.confluent.cloud:9092
topic: my-topic-name
format: json
Environment Variable | Example | Description |
---|---|---|
DATACONTRACT_KAFKA_SASL_USERNAME |
xxx |
The SASL username (key). |
DATACONTRACT_KAFKA_SASL_PASSWORD |
xxx |
The SASL password (secret). |
# Example export to dbt model
datacontract export --format dbt
Available export options:
Type | Description | Status |
---|---|---|
jsonschema |
Export to JSON Schema | ✅ |
odcs |
Export to Open Data Contract Standard (ODCS) | ✅ |
sodacl |
Export to SodaCL quality checks in YAML format | ✅ |
dbt |
Export to dbt models in YAML format | ✅ |
dbt-sources |
Export to dbt sources in YAML format | ✅ |
dbt-staging-sql |
Export to dbt staging SQL models | ✅ |
rdf |
Export data contract to RDF representation in N3 format | ✅ |
avro |
Export to AVRO models | ✅ |
protobuf |
Export to Protobuf | ✅ |
pydantic |
Export to pydantic models | TBD |
sql |
Export to SQL DDL | TBD |
Missing something? | Please create an issue on GitHub | TBD |
The export function converts a given data contract into a RDF representation. You have the option to add a base_url which will be used as the default prefix to resolve relative IRIs inside the document.
datacontract export --format rdf --rdf-base https://www.example.com/ datacontract.yaml
The data contract is mapped onto the following concepts of a yet to be defined Data Contract Ontology named https://datacontract.com/DataContractSpecification/ :
- DataContract
- Server
- Model
Having the data contract inside an RDF Graph gives us access the following use cases:
- Interoperability with other data contract specification formats
- Store data contracts inside a knowledge graph
- Enhance a semantic search to find and retrieve data contracts
- Linking model elements to already established ontologies and knowledge
- Using full power of OWL to reason about the graph structure of data contracts
- Apply graph algorithms on multiple data contracts (Find similar data contracts, find "gatekeeper" data products, find the true domain owner of a field attribute)
# Example import from SQL DDL
datacontract import --format sql --source my_ddl.sql
Available import options:
Type | Description | Status |
---|---|---|
sql |
Import from SQL DDL | ✅ |
protobuf |
Import from Protobuf schemas | TBD |
avro |
Import from AVRO schemas | TBD |
jsonschema |
Import from JSON Schemas | TBD |
dbt |
Import from dbt models | TBD |
odcs |
Import from Open Data Contract Standard (ODCS) | TBD |
Missing something? | Please create an issue on GitHub | TBD |
Python base interpreter should be 3.11.x (unless working on 3.12 release candidate).
# create venv
python3 -m venv venv
source venv/bin/activate
# Install Requirements
pip install --upgrade pip setuptools wheel
pip install -e '.[dev]'
cd tests/
pytest
Release
git tag v0.9.0
git push origin v0.9.0
python3 -m pip install --upgrade build twine
rm -r dist/
python3 -m build
# for now only test.pypi.org
python3 -m twine upload --repository testpypi dist/*
Docker Build
docker build -t datacontract/cli .
docker run --rm -v ${PWD}:/home/datacontract datacontract/cli
- Update the version in
pyproject.toml
- Have a look at the
CHANGELOG.md
- Create release commit manually
- Execute
./release
- Wait until GitHub Release is created
- Add the release notes to the GitHub Release
We are happy to receive your contributions. Propose your change in an issue or directly create a pull request with your improvements.
Created by Stefan Negele and Jochen Christ.
<style>.github-corner:hover .octo-arm{animation:octocat-wave 560ms ease-in-out}@keyframes octocat-wave{0%,100%{transform:rotate(0)}20%,60%{transform:rotate(-25deg)}40%,80%{transform:rotate(10deg)}}@media (max-width:500px){.github-corner:hover .octo-arm{animation:none}.github-corner .octo-arm{animation:octocat-wave 560ms ease-in-out}}</style>