DataLearning
DL-WG is developed by the Data Learning group, an interdisciplinary group developing pioneering research on fundamental Data Science and Machine Learning
Imperial College London
Pinned Repositories
DA-tutorial-
introduction to DA
Digital-twin-LA-global-wildfire
gcn-lstm-wildfire
LatentAssimilation
LatentGAN
ML_surrogate_model_wildfires
ML surrogate model which combines ROM, LSTM and DA for dynamical systems such as wildfires
mspcnn-for-dynamic-system
ROMS-tutorial
SCDNN-TS
VIVID
DataLearning's Repositories
DL-WG/gcn-lstm-wildfire
DL-WG/mspcnn-for-dynamic-system
DL-WG/SCDNN-TS
DL-WG/DA-tutorial-
introduction to DA
DL-WG/Digital-twin-LA-global-wildfire
DL-WG/VIVID
DL-WG/ViTAE
ViTAE: a vision transformer-based autoencoder and spatial interpolation learner for field reconstruction
DL-WG/Acoustic_emission_-_ML
DL-WG/Breathe-in-Breathe-out
DL-WG/DA_material
DL-WG/DL_Surrogate_JULES_INFERNO
DL-WG/drop-coalescence-surrogate-model-and-LA
DL-WG/dscvae-for-drop-coalescence
DL-WG/Explainable-AI-for-Drop-Coalescence
DL-WG/FIDN
Fire-Image-DenseNet - A model for predicting the final burnt area of wildfire
DL-WG/GLA_with_ROSM
In this project, we introduce the Generalised Latent Assimilation (GLA) approach which can be used in Machine learning surrogate modelling for dynamical systems
DL-WG/MEDLA-Multi-domain-encoder-decoder-neural-networks-for-latent-data-assimilation-in-dynamical-systems
DL-WG/DataLearningParadigm
Code repository for the data learning paper
DL-WG/AirQualityDisease
DL-WG/CMCC
DL-WG/datalearning-seminars
DL-WG/datalearning-seminars.github.io
DL-WG/diameter_inverse
DL-WG/Digital_twin_LA_global_wildfire
DL-WG/HPC-training
Python and bash script for training on HPC
DL-WG/Nuclear_reactor_VCNN
This repository includes the code for fast field reconstruction using Voronoi tessellation and CNN techniques
DL-WG/premiereDroplets
DL-WG/SCDNN_TS
DL-WG/Surrogate_model_JULES_INFERNO
DL-WG/WaveSuite
Generative networks for expand the design space of point absorber Wave Energy Converters (WECs)