UEC FOOD dataset to COCO dataset structure.
http://foodcam.mobi/dataset100.html
http://foodcam.mobi/dataset256.html
For the train-test split we also use:
http://foodcam.mobi/uecfood_split.zip
In split information,
Training set
= val0.txt
, val1.txt
, val2.txt
Validation set
= val3.txt
Test set
= val4.txt
git clone https://github.com/Daeil-Jung/UECFOOD_2_COCO
pip install pillow
cd UECFOOD_2_COCO
python uecfood_2_coco.py UECFOOD256 # or UECFOOD100
python uecfood_2_coco.py [-h] [--path PATH] [--dest DEST] {UECFOOD256,UECFOOD100}
Transform UEC FOOD dataset like COCO dataset structure
{UECFOOD256,UECFOOD100}
: Choose UECFOOD256 or UECFOOD100
Header | Description |
---|---|
-h, --help | Show this help message and exit |
--path PATH, -p PATH | Path of target dataset |
--dest DEST, -d DEST | Where you make coco dataset |
├UECFOOD_2_COCO
├─dataset256 # or dataset100
│ └─UECFOOD256
│ ├─1.jpg
│ ├─10.jpg
│ ├─100.jpg
│ ├─ ...
├uecfood_split
│ ├─uecfood100_split
│ └─uecfood256_split
│ ├─val0.txt
│ ├─val1.txt
│ ├─val2.txt
│ ├─val3.txt
│ ├─val4.txt
├─uecfood_2_coco.py
├uecfood256_coco # or uecfood100_coco
├─classes.txt
├─*.jpg
├─annotations
│ ├─train_anno.json
│ ├─test_anno.json
│ └─valid_anno.json