Driving-Environment-Detector recognizes everyday road objects on a road scene. It is based on the You Only Look Once CNN Architecture, specifically the YOLO v2 Darknet 19.
Click to view full architecture
- Python
- Tensorflow
- OpenCV
- Others
- Python
python driving_environment_detector.py
.
├── README.md
├── FiraMono-Medium.otf
├── SIL Open Font License.txt
├── Images
│ ├── sample.png
│ ├── yolo_model_architecture_short.png
│ ├── yolo_model_architecture.png
│ ├── yolo v2 darknet19.png
│ ├── sample_input.png
│ └── sample_input.png
├── model data
│ ├── variables
│ │ ├── anchors.txt
│ │ ├── coco_classes.txt
│ │ ├── pascal_classes.txt
│ │ ├── saved_model.pb
│ │ └── yolo_anchors.txt
│ └── yad2k
│ │ ├── __pycache__
│ │ ├── models
│ │ └── utils
│ │ │ └── util.py
├── .gitattributes
├── driving_environment_detector_voila.ipynb
├── driving_environment_detector.ipynb
├── driving_environment_detector.py
└── requirements.txt
Simply place your video covering a road scene in the top directory. Run the installation code, sip some coffee or take a walk depending on the legth of your video :). When completed, the new video can be found in out/output_video.mp4
Sample Input | Sample Output |
---|---|
- SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing - Scientific Figure on ResearchGate.
- Convolutional Neural Netwokrs
Dahir Ibrahim (Deedax Inc) - http://instagram.com/deedax_inc
Email - suhayrid@gmail.com
YouTube - https://www.youtube.com/channel/UCqvDiAJr2gRREn2tVtXFhvQ
Project Link - https://github.com/Daheer/Driving-Environment-Detector
Twitter - https://twitter.com/DeedaxInc