/Driving-Environment-Detector

Detecting road objects using YOLO CNN Architecture

Primary LanguagePythonMIT LicenseMIT

Driving-Environment-Detector

Driving-Environment-Detector recognizes everyday road objects on a road scene. It is based on the You Only Look Once CNN Architecture, specifically the YOLO v2 Darknet 19.

Yolo v2 Darknet 19

Model Architecture Plot

Click to view full architecture

Yolo Driving Environment Model Architecture

Built Using

Prerequisites and Installation

  • Python
  • python driving_environment_detector.py
    

Project Structure

.
├── README.md
├── FiraMono-Medium.otf
├── SIL Open Font License.txt
├── Images
│   ├── sample.png
│   ├── yolo_model_architecture_short.png
│   ├── yolo_model_architecture.png
│   ├── yolo v2 darknet19.png
│   ├── sample_input.png
│   └── sample_input.png
├── model data
│   ├── variables
│   │   ├── anchors.txt
│   │   ├── coco_classes.txt
│   │   ├── pascal_classes.txt
│   │   ├── saved_model.pb
│   │   └── yolo_anchors.txt
│   └── yad2k
│   │   ├── __pycache__
│   │   ├── models
│   │   └── utils
│   │   │   └── util.py
├── .gitattributes
├── driving_environment_detector_voila.ipynb
├── driving_environment_detector.ipynb
├── driving_environment_detector.py
└── requirements.txt

Usage

Simply place your video covering a road scene in the top directory. Run the installation code, sip some coffee or take a walk depending on the legth of your video :). When completed, the new video can be found in out/output_video.mp4

Demo

Sample Input Sample Output

References

Contact

Dahir Ibrahim (Deedax Inc) - http://instagram.com/deedax_inc
Email - suhayrid@gmail.com
YouTube - https://www.youtube.com/channel/UCqvDiAJr2gRREn2tVtXFhvQ
Project Link - https://github.com/Daheer/Driving-Environment-Detector
Twitter - https://twitter.com/DeedaxInc