PyTorch code for the IEEE Access paper: Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs [PDF].
Required : Anaconda
conda create -n treekgqa -y python=3.8 && source activate treekgqa
pip install -r requirements.txt
chmod +x setup.sh
./setup.sh
Note: the code require more cleaning.
We use Wikidata entities provided by ELQ . In order to perform inference, first index the Wikidata entities by executing the follwing command:
python utils/indexer.py --output_path data/wikidata/indexed_wikidata_entities.pkl --faiss_index hnsw --save_index
Indexing might take few hours depending on the system capabilities and resource.
To test entity linking on the webqsp
dataset run the following command:
python -u run_kgqa.py --dataset webqsp --task EL --use_api --use_indexing --QAtype complex --evaluate
@ARTICLE{9770789,
author={Rony, Md Rashad Al Hasan and Chaudhuri, Debanjan and Usbeck, Ricardo and Lehmann, Jens},
journal={IEEE Access},
title={Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs},
year={2022},
volume={10},
number={},
pages={50467-50478},
doi={10.1109/ACCESS.2022.3173355}
}
For further information, contact the corresponding author Md Rashad Al Hasan Rony (email).