This repository contains a collection of Jupyter notebooks that I created while learning PyTorch. I used the following resource to learn PyTorch:
The notebooks cover various topics and tasks related to PyTorch, including linear regression, multi-class classification, CNN, transfer learning, and more.
00_pytorch_fundamentals.ipynb
- An introduction to PyTorch fundamentals.01_pytorch_workflow_linear_regression_v1.ipynb
- Linear regression using PyTorch (Version 1).01_pytorch_workflow_linear_regression_v2.ipynb
- Linear regression using PyTorch (Version 2).02_pytorch_multi_class_classification.ipynb
- Multi-class classification with PyTorch.02_pytorch_multi_layer_binary_classification.ipynb
- Binary classification with multiple layers in PyTorch.02_pytorch_multi_layer_non_linear_classification.ipynb
- Non-linear classification with multiple layers in PyTorch.02_pytorch_multi_layer_regression.ipynb
- Multi-layer regression using PyTorch.02_pytorch_non_linear_activation_functions.ipynb
- Exploring non-linear activation functions in PyTorch.02_pytorch_non_linear_spiral_classification.ipynb
- Non-linear spiral classification with PyTorch.02_pytorch_simple_binary_classification.ipynb
- Simple binary classification using PyTorch.03_pytorch_fashion_mnist_cnn.ipynb
- Fashion MNIST classification using CNN in PyTorch.03_pytorch_fashion_mnist_linear.ipynb
- Fashion MNIST classification using linear models in PyTorch.03_pytorch_fashion_mnist_non_linear.ipynb
- Fashion MNIST classification using non-linear models in PyTorch.03_pytorch_fashion_mnist_resnet50.ipynb
- Fashion MNIST classification using ResNet50 in PyTorch.04_pytorch_custom_dataset.ipynb
- Working with custom datasets in PyTorch.05_pytorch_transfer_learning.ipynb
- Transfer learning with PyTorch.06_pytorch_experiment_tracking.ipynb
- Experiment tracking with PyTorch.07_pytorch_vision_transformer.ipynb
- Vision Transformer (ViT) implementation in PyTorch.08_pytorch_model_deployment.ipynb
- Model deployment using PyTorch.09_pytorch_quick_pytorch_2.ipynb
- Quick introduction to PyTorch 2.0.
I used the following resource to learn PyTorch:
Special thanks to Daniel Bourke (Github username: mrdbourke) for providing valuable learning material and code examples. You can find his repository on PyTorch Deep Learning here: PyTorch Deep Learning.
Feel free to explore the notebooks and utilize the resources mentioned above to enhance your PyTorch skills. Happy learning!
Note: If you plan to use any part of this repository or the models, please adhere to the respective licenses and terms of use.