Optimized numerical computation using Continuum's Numba. Intended as a drop-in replacement for numerical functions in numpy, scipy, or builtins. Provides strong performance boosts.
Inputs use numpy arrays. Using other formats like lists, or pandas Dataframes will adversely affect speed. Rough/early release - Open to suggestions and bug reports.
- sum: Similar to builtin sum, or numpy.sum
- mean: Similar to numpy.mean
- var: Variance test, similar to numpy.var
- cov: Covariance estimation, similar to numpy.cov
- std: Standard deviation, similar to numpy.std
- corr: Pearson correlation test, similar to scipy.stats.pearsonr
- bisect: Similar to standard library bisect.bisect
- bisect_left: Similar to standard library builtin.bisect_left
- interp: Linear interpoliation, similar to numpy.interp. x is a one-axis array.
- interp_one: Linear interpolation, similar to numpy.interp. x is a single value.
- detrend: Similar to scipy.signal.detrend. Linear or constant trend.
- ols: Ordinary Least Squares regression solution for two data sets.
- ols_single: Ordinary Least Squares regression solution for one data set.
- lin_resids: Residuals calculation from a linear regression with two data sets
- lin_resids_single: Residuals calculation from a linear regression with one data set.
- j0: Similar to scipy.special.j0. Bessel function of the first kind, order 0.
brisk.sum(data: numpy.array) -> float:
- Inputs:
- data: Input data.
- Ouputs:
- Sum of all values in data.
brisk.mean(data: numpy.array) -> float:
- Inputs:
- data: Input data.
- Ouputs:
- Mean of all values in data.
brisk.var(data: numpy.array) -> float:
- Inputs:
- data: Input data.
- Ouputs:
- Variance of data.
brisk.cov(m: numpy.array, y: numpy.array) -> float:
- Inputs:
- m and y: two data sets to find the covariance of. Must be the same size.
- Ouputs:
- Covariance of m and y.
brisk.std(data: numpy.array) -> float:
- Inputs:
- data: Input data.
- Ouputs:
- Standard deviation of data.
brisk.corr(x: numpy.array, y: numpy.array) -> float:
- Inputs:
- x and y: two numpy.arary data sets to find the pearson correlation of. Must be the same size.
- Ouputs:
- Pearson correlation of m and y.
brisk.bisect(a: float, x: numpy.array) -> int:
- Inputs:
- a: Value to be inserted.
- x: numpy array to insert a into.
- Ouputs:
- The insertion point for x in a to maintain sorted order.
brisk.bisect_left(a: float, x: numpy.array) -> int:
- Inputs:
- a: Value to be inserted.
- x: numpy array to insert a into.
- Ouputs:
- The insertion point for x in a to maintain sorted order.
brisk.interp(x: numpy.array, xp: numpy.array, fp: numpy.array) -> numpy.array:
- Inputs:
- x: x coordinates of the interpolated values.
- xp: x coordinates of the data points.
- yp: y coordinates of the data points. Same size as xp.
- Ouputs:
- The interpolated values.
brisk.interp_one(x: float, xp: numpy.array, fp: numpy.array) -> float:
- Inputs:
- x: x coordinates of the interpolated value.
- xp: x coordinates of the data points.
- yp: y coordinates of the data points. Same size as xp.
- Ouputs:
- The interpolated value.
brisk.detrend(data: numpy.array, type_: str) -> numpy.array:
- Inputs:
- data: The data to detrend
- type: Use 'c' or 'constant' for constant detrending. Use 'l' or 'linear' for linear detrending.
- Ouputs:
- The detrended data.
brisk.ols(x: numpy.array, y: numpy.array) -> (float, float):
- Inputs:
- x: x values to run regression on.
- y: y values to run regression on.
- Ouputs:
- A tuple of the resulting slope and intercept.
brisk.ols_single(y: numpy.array) -> (float, float):
- Inputs:
- y: y values to run regression on. x values are inferred to be a range from 0 to y.size.
- Ouputs:
- A tuple of the resulting slope and intercept.
brisk.lin_resids(x: numpy.array, y: numpy.array, slope: float, intercept: float) -> numpy.array:
- Inputs:
- x: x values regression was run on.
- y: y values regression was run on.
- slope: Regression slope.
- intercept: Regression intercept.
- Ouputs:
- An array of the linear residuals.
brisk.lin_resids_single(x: numpy.array, slope: float, intercept: float) -> numpy.array:
- Inputs:
- y: y values regression was run on. x values are inferred to be a range from 0 to y.size.
- slope: Regression slope.
- intercept: Regression intercept.
- Ouputs:
- An array of the linear residuals.