A local, free, and fully automated README generator powered by Ollama + Qwen2-7B.
It analyzes any GitHub project or local folder and generates a professional, detailedREADME.md— no API keys or online LLMs required.
This project creates intelligent, factual, and human-like README files by scanning a repository’s code, configurations, and structure.
It uses local open-source models (via Ollama) to understand the project purpose and features, combined with deterministic detectors to identify the tech stack, license, and quick-start commands.
All processing happens offline and locally — nothing leaves your computer.
- Automatic Project Analysis – Scans all relevant files and extracts structure, language, and key details.
- LLM-Powered Summaries – Uses
Qwen2-7Bthrough Ollama to generate high-quality taglines, overviews, and feature lists. - Deterministic Detectors – Extracts facts (tech stack, license, quick start, project tree) without using AI.
- Template Rendering – Generates professional-grade Markdown using Jinja2 templates.
- Dual Input – Works from a local project folder or a GitHub repository (e.g.
--repo owner/name@branch). - Free & Offline – No API calls, no tokens, and no hidden costs.
- Cross-Project Use – Works on any size or type of project: web apps, APIs, AI tools, or libraries.
- Python 3.10+
- Ollama (installed locally)
Download: https://ollama.com/download - Recommended model:
ollama pull qwen2:7b
- Python dependencies:
pip install jinja2 ollama
-
Clone this repository
git clone https://github.com/Dazdingo11/OllamaReadMeGenerator.git cd OllamaReadMeGenerator -
Create and activate a virtual environment
python -m venv .venv # Windows .\.venv\Scripts\activate # macOS/Linux source .venv/bin/activate
-
Install dependencies
pip install -r requirements.txt
-
Pull a local model
ollama pull qwen2:7b
Generate a README for a local project:
python src\cli.py --path "C:\Path\To\Any\Project" --max-files 40Or for a GitHub repo:
python src\cli.py --repo "owner/repo@main"The generated README will be saved in your working directory by default.
src/
├─ cli.py # Main entrypoint
├─ compose/
│ ├─ main_orchestrator.py # Core logic
│ └─ template_renderer.py # Jinja2 renderer
├─ detect/
│ ├─ file_map.py # Scans files and filters binaries
│ └─ tech_detectors.py # Identifies frameworks, licenses, quick start commands
├─ summarize/
│ ├─ llm_client.py # Handles local model (Ollama)
│ └─ worker_purpose.py # Generates tagline, overview, and features via LLM
templates/
├─ README.j2 # Jinja2 template for final README
└─ README.base.hbs # Legacy placeholder template
- File Scanner –
detect/file_map.pywalks through the repo, collecting meaningful files. - LLM Worker –
summarize/worker_purpose.pyuses Qwen2-7B to describe the project’s purpose and features. - Tech Detectors – Parse
package.json,pyproject.toml,Dockerfile, andLICENSEfor factual details. - Template Renderer – Combines all data into a Markdown template (
templates/README.j2). - Output – A polished, professional README written automatically.
# todolist
A vanilla HTML, CSS, and JavaScript To-Do app for bootcamp projects.
## Overview
This single-page application provides a clean interface with features like task adding, validation, priority setting, sorting, filtering, searching, and editing.
## Features
- Add, edit, and delete tasks
- Search and filter by status or priority
- Local storage persistence
- Drag-and-drop task orderingThis project is actively evolving.
Upcoming planned features include:
- Architecture visualization via Mermaid diagrams
- Cache system to skip unchanged files
- Multi-model support (Phi-3, Llama-3)
- Optional web UI for drag-and-drop generation
- Better GitHub integration (auto-commit generated README)
| Name | Role |
|---|---|
| Dazdingo11 | Creator & Developer |
| Qwen2-7B via Ollama | Local language model powering summarization |
This project is open-source and distributed under the MIT License.
Feel free to fork, modify, and contribute.
- This tool is intentionally offline-first — it never sends code to any external API.
- It’s ideal for bootcamps, developers, and educators who want consistent documentation with zero cost.
- Future updates will keep improving modularity and detection accuracy.
Built with passion, by developers for developers.