相关项目:
- SwanLab:训练人像抠图模型全程用它来分析和监控,以及和实验室同学协作交流,大幅提升了训练效率。
- 在线体验: 、
- 2024.9.2: 更新调整照片 KB 大小
- 2023.12.1: 更新API 部署(基于 fastapi)
- 2023.6.20: 更新预设尺寸菜单
- 2023.6.19: 更新排版照
- 2023.6.13: 更新中心渐变色
- 2023.6.11: 更新上下渐变色
- 2023.6.8: 更新自定义尺寸
- 2023.6.4: 更新自定义底色、人脸检测 Bug 通知
- 2023.5.10: 更新不改尺寸只换底
🚀 谢谢你对我们的工作感兴趣。您可能还想查看我们在图像领域的其他成果,欢迎来信:zeyi.lin@swanhub.co.
HivisionIDPhoto 旨在开发一种实用的证件照智能制作算法。
它利用一套完善的模型工作流程,实现对多种用户拍照场景的识别、抠图与证件照生成。
HivisionIDPhoto 可以做到:
- 轻量级抠图(仅需 CPU 即可快速推理)
- 根据不同尺寸规格生成不同的标准证件照、六寸排版照
- 美颜(waiting)
- 智能换正装(waiting)
如果 HivisionIDPhoto 对你有帮助,请 star 这个 repo 或推荐给你的朋友,解决证件照应急制作问题!
- Python >= 3.7(项目主要测试在 python 3.10)
- onnxruntime
- OpenCV
- Option: Linux, Windows, MacOS
1. 克隆项目
git clone https://github.com/Zeyi-Lin/HivisionIDPhotos.git
cd HivisionIDPhotos
2. 安装依赖环境
pip install -r requirements.txt
3. 下载权重文件
在我们的Release下载权重文件hivision_modnet.onnx
,存到根目录下。
python app.py
运行程序将生成一个本地 Web 页面,在页面中可完成证件照的操作与交互。
python deploy_api.py
请求 API 服务(Python)
用 Python 给服务发送请求:
证件照制作(输入 1 张照片,获得 1 张标准证件照和 1 张高清证件照的 4 通道透明 png):
python requests_api.py -u http://127.0.0.1:8080 -i images/test.jpg -o ./idphoto.png -s '(413,295)'
增加底色(输入 1 张 4 通道透明 png,获得 1 张增加了底色的图像):
python requests_api.py -u http://127.0.0.1:8080 -t add_background -i ./idphoto.png -o ./idhoto_ab.jpg -c '(0,0,0)' -k 30
得到六寸排版照(输入 1 张 3 通道照片,获得 1 张六寸排版照):
python requests_api.py -u http://127.0.0.1:8080 -t generate_layout_photos -i ./idhoto_ab.jpg -o ./idhoto_layout.jpg -s '(413,295)' -k 200
拉取镜像:
该镜像构建于 ARM 架构机器(如 Mac M1),x86 架构机器使用请用 Dockerfile 构建
docker pull linzeyi/hivision_idphotos:v1
Dockrfile 构建镜像:
在确保将模型权重文件hivision_modnet.onnx放到根目录下后,在根目录执行:
docker build -t hivision_idphotos .
等待镜像封装完毕后,运行以下指令,即可开启 Gradio Demo 服务:
docker run -p 7860:7860 hivision_idphotos
在你的本地访问http://127.0.0.1:7860即可使用。
docker run -p 8080:8080 hivision_idphotos python3 deploy_api.py
- MTCNN: https://github.com/ipazc/mtcnn
- ModNet: https://github.com/ZHKKKe/MODNet
1. 如何修改预设尺寸?
修改size_list_CN.csv后再次运行 app.py 即可,其中第一列为尺寸名,第二列为高度,第三列为宽度。
如果您有任何问题,请发邮件至 zeyi.lin@swanhub.co
Zeyi-Lin、SAKURA-CAT、Feudalman、swpfY、Kaikaikaifang、ShaohonChen、KashiwaByte