/pimcscripts

Scripts for dealing with quantum Monte Carlo data.

Primary LanguagePythonMIT LicenseMIT

pimcscripts

This repository includes a number of python scripts that are useful for working with quantum Monte Carlo data generated via the Del Maestro group PIMC code which is located at https://code.delmaestro.org.

Installation

For now, we have not uploaded to pypi but the scripts can be installed directly from git:

pip install --upgrade git+https://github.com/DelMaestroGroup/pimcscripts.git#egg=pimcscripts

This will install the base library pimcscripts which includes the modules pimcscripts.pimchelp and pimcscripts.MCStat as well as a number of very useful helper scripts located in ./bin. These should be installed to your path and include documentation that can found via:

script_name.py --help

If you are upgrading after a change, it might be useful to use:

pip install --upgrade --no-deps --force-reinstall git+https://github.com/DelMaestroGroup/pimcscripts.git#egg=pimcscripts

Below we describe a few useful ones.

Helper Scripts

pimcave.py

usage: pimcave.py [-h] [-s SKIP] [-l HEADER_LINES] [-r] file [file ...]

Generates averages from pimc output data.

positional arguments:
  file                  File or files to average.

optional arguments:
  -h, --help            show this help message and exit
  -s SKIP, --skip SKIP  How many input lines should we skip? [default: 0]
  -l HEADER_LINES, --header_lines HEADER_LINES
                        How many header lines to skip?
  -r, --repeated_header
                        deal with duplicate headers

pimcplot.py

pimcplot

Description:
  Performs a cumulative average plot of raw Monte Carlo data

Usage:
    pimcplot.py [options] [--legend=<label>...] --estimator=<name> <file>...

    pimcplot.py -h | --help

Options:
  -h, --help                    Show this screen.
  --estimator=<name>, -e <name> The estimator to be plotted.
  --skip=<n>, -s <n>            Number of measurements to be skipped [default: 0].
  --period=<m>, -p <m>          The period of the average window [default: 50].
  --truncateid=<t>, -t <t>      Truncate PIMCID to last <t> characters [default: 0].
  --legend=<label>, -l <label>  A legend label
  --period=<m>, -p <m>          The period of the average window [default: 50].
  --error=<units>, -d           Size of the error bars
  --nobin                       Don't use the binned errorbars
  --nolegend                    Turn off the legend
  --ttest                       Perform a ttest
  --hline=<val>                 Include a horizontal line at <val> in the averaged plot
  --hlabel=<hl>                 A legend label for the horizontal line.
  --title=<title>               A title for the plots.
  --savefig=<figure>            A filename for saved plots (extensions supported by active matplotlib backend).
  --quiet                       Suppress output

reduce-one.py

usage: reduce-one.py [-h] [-T T] [-N N] [-n N] [-t TAU] [-u MU] [-L L] [-V V] -r {T,N,n,u,t,L,V,M} [--canonical] [-R R] [-s SKIP] [-e ESTIMATOR] [-i PIMCID] [base_dir]

Reduce quantum Monte Carlo output over some parameter.

positional arguments:
  base_dir              The base directory where the data files to be reduced are located.

optional arguments:
  -h, --help            show this help message and exit
  -T T, --temperature T
                        simulation temperature in Kelvin
  -N N, --number-particles N
                        number of particles
  -n N, --density N     number density in Angstroms^{-d}
  -t TAU, --imag-time-step TAU
                        imaginary time step
  -u MU, --chemical-potential MU
                        chemical potential in Kelvin
  -L L, --Lz L          Length in Angstroms
  -V V, --volume V      volume in Angstroms^d
  -r {T,N,n,u,t,L,V,M}, --reduce {T,N,n,u,t,L,V,M}
                        variable name for reduction [T,N,n,u,t,L,V,W,M]
  --canonical           are we in the canonical ensemble?
  -R R, --radius R      radius in Angstroms
  -s SKIP, --skip SKIP  number of measurements to skip [0]
  -e ESTIMATOR, --estimator ESTIMATOR
                        specify a single estimator to reduce
  -i PIMCID, --pimcid PIMCID
                        specify a single pimcid