/empirical-methods

Homepage for 17-803 "Empirical Methods" at Carnegie Mellon University

Primary LanguageHTMLOtherNOASSERTION

Empirical Methods (thanks for the promo, @JoshQuicksall!)

This is the Spring 2021 offering of this course. For older versions, see here: Fall 2018.

Overview

Empirical methods play a key role in the design and evaluation of tools and technologies, and in testing the social and technical theories they embody. No matter what your research area is, chances are you will be conducing some empirical studies as part of your work. Are you looking to evaluate a new algorithm? New tool? Analyze (big) data? Understand what challenges practitioners face in some domain?

This course is a survey of empirical methods designed for computer science PhD students, that teaches you how to go about each of these activities in a principled and rigorous way. You will learn about and get hands-on experience with a core of qualitative and quantitative empirical research methods, including interviews, qualitative coding, survey design, and many of the most useful statistical analyses of (large-scale) data, such as various forms of regression, time series analysis, and causal inference. And you will learn how to design valid studies applying and combining these methods.

There will be extensive reading with occasional student presentations about the reading in class, homework assignments, and a semester-long research project for which students must prepare in-class kickoff and final presentations as well as a final report.

After completing this course, you will:

  • become a more sophisticated consumer of empirical research, both in your field and outside
  • develop the methodological skills that can help you design and carry out empirical components in your own research program
  • be able to analyze empirical data, draw conclusions, and present results
  • be able to read, summarize, present, but most importantly critique academic empirical research papers on a deep technical level

As a side effect, this course helps you develop a healthy dose of skepticism towards scientific results in general. Does the study design really allow the authors to make certain claims? Does the analysis technique? Is the evidence provided as strong as it could be? Are there fundamental flaws and threats to validity?

Coordinates

  • Lectures: Tuesdays & Thursdays 2:20-3:40pm, Eastern Time, on Zoom
  • Assignments, private announcements: Canvas
  • Slides: this website
  • Instructor: Bogdan Vasilescu

Course Syllabus and Policies

The syllabus covers course overview and objectives, evaluation, time management, late work policy, and collaboration policy.

Learning Goals

The learning goals describe what I want students to know or be able to do by the end of the semester. I evaluate whether learning goals have been achieved through assignments, written project reports, and in-class presentations.

Schedule

Below is a preliminary schedule for Spring 2021. Each link points to a dedicated page with materials and more details. Note: The schedule is subject to change and will be updated as the semester progresses.

Date Topic Notes
Tue, Feb 2 Introduction
Thu, Feb 4 Formulating research questions
Tue, Feb 9 The role of theory
Thu, Feb 11 Conducting interviews
Tue, Feb 16 Qualitative data analysis (part I - coding)
Thu, Feb 18 Qualitative data analysis (part II - reliability, trustworthiness)
Tue, Feb 23 Break Day; No Classes
Thu, Feb 25 Designing surveys
Tue, Mar 2 Designing experiments
Thu, Mar 4 Intro to measurement. Basic statistics
Tue, Mar 9 Project proposals (elevator pitches)
Thu, Mar 11 Statistical traps and trickery
Tue, Mar 16 Vanilla regression modeling (part I)
Thu, Mar 18 Vanilla regression modeling (part II)
Tue, Mar 23 Fancy regression modeling
Thu, Mar 25 Regression discontinuity design
Tue, Mar 30 Causal inference part 1 (first differences, diff in diff)
Thu, Apr 1 Causal inference part 2 (causal impact)
Tue, Apr 6 Mixed-methods designs
Thu, Apr 8 Big data vs thick data
Tue, Apr 13 Researchers are human, too
Thu, Apr 15 Spring Carnival; No Classes
Tue, Apr 20 Agree to disagree
Thu, Apr 22 Stepping up your typesetting and graphics game
Tue, Apr 27 Stepping up your presentation game
Thu, Apr 29 Retrospective
Tue, May 4 Final presentations (part I)
Thu, May 6 Final presentations (part II)