/speech_analytics

Speech analytics package for call-center

Primary LanguagePythonMIT LicenseMIT

speech_analytics

Speech analytics package for call-center allows you to estimate your operator's work. It provides a user-friendly interface using Telegram bots.

Every file goes through the following operations:

  • Noise suppression
  • Diarization
  • Voice activity detection
  • Pauses and interruptions detection
  • Necessary phrases detection
  • Bad words and threats detection System Architecture

Installing

First, you need to clone the repository:

git clone https://github.com/DinoTheDinosaur/speech_analytics
cd speech_analytics

Create virtual environment and install necessary packages. Please note, that only Python 3.8 is supported:

python -m venv venv
python -m pip install -r requirements.txt

Create config.yaml file:

# for SR (yandex or vosk)
recognition_engine: "vosk"

# necessary files (models, corpuses, etc.)
suppressor_model_weights: "./data/model_weights.ckpt"
vosk_model: "./data/vosk"
white_list: "./data/white_list.json"
obscene_corpus: "./data/obscene_corpus.json"
threats_corpus: "./data/threats_corpus.json"
white_checklist: "./data/check_list_white.json"
black_checklist: "./data/check_list_black.json"

# for Telegram bot
bot_token: "YOUR_TELEGRAM_BOT_ACCESS_TOKEN_HERE"

# for Yandex Speech kit
bucket: "YOUR_BUCKET_HERE"
aws_key: "YOUR_AWS_KEY_HERE"
aws_key_id: "YOUR_AWS_KEY_ID_HERE"
ya_api_key: "YOUR_YANDEX_SPEECH_KIT_API_KEY"

Run bot:

python run_bot.py

Example answer

Example answer

Models

In case you didn't find necessary data in the repository, you can download it directly:

CompTech 2021