spacenet-detection
Problem
In this project we intend to build a neural network for segmentation of building footprints in high-resolution satellite imagery using SpaceNet dataset.
Dataset
Using the Spacenet Dataset for Paris available on AWS. Download this using awscli
aws s3api get-object --bucket spacenet-dataset \
--key AOI_3_Paris/processedData/processedBuildingLabels.tar.gz \
--request-payer requester processedBuildingLabels.tar.gz
Annotations can be generated by cloning https://github.com/SpaceNetChallenge/utilities and running
python python/createDataSpaceNet.py /path/to/spacenet_sample/AOI_2_Vegas_Train/ \
--srcImageryDirectory RGB-PanSharpen \
--outputDirectory /path/to/spacenet_sample/annotations/ \
--annotationType PASCALVOC2012 \
--convertTo8Bit \
--outputFileType JPEG \
--imgSizePix 400
Final model code is contained in stanfordmodel.ipynb
Evaluation Metric
The ground truth for objects is given as polygons. Thus we intend to use intersection over Union as the evaluation metric for object segmentation.
Main Code file
stanfordmodel.ipynb