/SINF

Sliced Iterative Generator (SIG) & Gaussianizing Iterative Slicing (GIS)

Primary LanguagePython

Sliced Iterative Normalizing Flows

This repository is the official implementation of Sliced Iterative Normalizing Flows.

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train SIG and GIS, run the following commands:

python SIG.py --dataset DATASET --seed SEED --save SAVING_ADDRESS   
python GIS.py --dataset DATASET --seed SEED --save SAVING_ADDRESS

Evaluation

The FID score of SIG samples can also be evaluated on the fly with the "--evaluateFID" argument.

Results

SIG achieves the following performance on :

FID score

MNIST Fashion CIFAR10 CelebA
4.5 13.7 66.5 37.3

OoD detection (AUROC on models trained on FashionMNIST)

MNIST OMNIGLOT FMNIST-hflip FMNIST-vflip
0.990 0.993 0.631 0.821