/LLM4Rec-Awesome-Papers

A list of awesome papers and resources of recommender system on large language model (LLM).

LLM for Recommendation Systems

A list of awesome papers and resources of recommender system on large language model (LLM).

🎉 News: Our LLM4Rec survey has been released. A Survey on Large Language Models for Recommendation

The related work and projects will be updated soon and continuously.

Editor

If our work has been of assistance to you, please feel free to cite our survey. Thank you.

@article{llm4recsurvey,
  author       = {Likang Wu and Zhi Zheng and Zhaopeng Qiu and Hao Wang and Hongchao Gu and Tingjia Shen and Chuan Qin and Chen Zhu and Hengshu Zhu and Qi Liu and Hui Xiong and Enhong Chen},
  title        = {A Survey on Large Language Models for Recommendation},
  journal      = {CoRR},
  volume       = {abs/2305.19860},
  year         = {2023}
}

Table of Contents

The papers and related projects

No Tuning

Note: The tuning here only indicates whether the LLM model has been tuned.

Name Paper Venue Year Code LLM
N/A Large Language Models as Zero-Shot Conversational Recommenders, Zhankui He*, Zhouhang Xie*, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng, Bodhisattwa Majumder, Nathan Kallus, Julian McAuley, Conference on Information and Knowledge Management, CIKM'23 CIKM 2023 Python GPT-3.5-turbo ,GPT-4,BAIZE,Vicuna
Agent4Rec Zhang A, Sheng L, Chen Y, et al. On Generative Agents in Recommendation[J]. arXiv preprint arXiv:2310.10108, 2023. arxiv 2023 Python GPT4
N/A Zero-Shot Recommendations with Pre-Trained Large Language Models for Multimodal Nudging arxiv 2023 N/A BLIP-2+GPT4
InteRecAgent Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations arxiv 2023 N/A GPT4
GPT4SM Peng, Wenjun, et al. "Are GPT Embeddings Useful for Ads and Recommendation?." International Conference on Knowledge Science, Engineering and Management. Cham: Springer Nature Switzerland, 2023. KSEM 2023 Python GPT
LLMRG Wang, Y., Chu, Z., Ouyang, X., Wang, S., Hao, H., Shen, Y., ... & Li, S. (2023). Enhancing Recommender Systems with Large Language Model Reasoning Graphs. arXiv preprint arXiv:2308.10835. arxiv 2023 N/A GPT-3.5/GPT4
RAH Shu, Y., Gu, H., Zhang, P., Zhang, H., Lu, T., Li, D., & Gu, N. (2023). RAH! RecSys-Assistant-Human: A Human-Central Recommendation Framework with Large Language Models. arXiv preprint arXiv:2308.09904. arxiv 2023 N/A GPT4
LLM-Rec Lyu, Hanjia, et al. "LLM-Rec: Personalized Recommendation via Prompting Large Language Models." arXiv preprint arXiv:2307.15780 (2023). arxiv 2023 N/A GPT-3
N/A Sanner, S., Balog, K., Radlinski, F., Wedin, B., & Dixon, L. (2023). Large Language Models are Competitive Near Cold-start Recommenders for Language-and Item-based Preferences. arXiv preprint arXiv:2307.14225. RecSys 2023 N/A PaLM
MINT Mysore S, McCallum A, Zamani H. Large Language Model Augmented Narrative Driven Recommendations[J]. arXiv preprint arXiv:2306.02250, 2023. Recsys 2023 N/A 175B InstructGPT
KAR Xi, Y., Liu, W., Lin, J., Zhu, J., Chen, B., Tang, R., ... & Yu, Y. (2023). Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models. arXiv preprint arXiv:2306.10933. arxiv 2023 Python ChatGLM
RecAgent Wang, L., Zhang, J., Chen, X., Lin, Y., Song, R., Zhao, W. X., & Wen, J. R. (2023). RecAgent: A Novel Simulation Paradigm for Recommender Systems. arXiv preprint arXiv:2306.02552. arxiv 2023 Python ChatGPT
AnyPredict Wang Z, Gao C, Xiao C, et al. AnyPredict: Foundation Model for Tabular Prediction[J]. arXiv preprint arXiv:2305.12081, 2023. arxiv 2023 N/A ChatGPT,BioBERT
iEvaLM Wang, X., Tang, X., Zhao, W. X., Wang, J., & Wen, J. R. (2023). Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models. arXiv preprint arXiv:2305.13112. arxiv 2023 Python ChatGPT
N/A Hou, Y., Zhang, J., Lin, Z., Lu, H., Xie, R., McAuley, J., & Zhao, W. X. (2023). Large Language Models are Zero-Shot Rankers for Recommender Systems. arXiv preprint arXiv:2305.08845. arxiv 2023 Python ChatGPT
FaiRLLM Zhang, J., Bao, K., Zhang, Y., Wang, W., Feng, F., & He, X. (2023). Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation. arXiv preprint arXiv:2305.07609. Recsys 2023 Python ChatGPT
GENRE Liu, Q., Chen, N., Sakai, T., & Wu, X. M. (2023). A First Look at LLM-Powered Generative News Recommendation. arXiv preprint arXiv:2305.06566. arxiv 2023 Python ChatGPT
N/A Lin, G., & Zhang, Y. (2023). Sparks of Artificial General Recommender (AGR): Early Experiments with ChatGPT. arXiv preprint arXiv:2305.04518. arxiv 2023 N/A ChatGPT
N/A Dai, S., Shao, N., Zhao, H., Yu, W., Si, Z., Xu, C., ... & Xu, J. (2023). Uncovering ChatGPT's Capabilities in Recommender Systems. arXiv preprint arXiv:2305.02182. arxiv 2023 Python ChatGPT
N/A Liu, J., Liu, C., Lv, R., Zhou, K., & Zhang, Y. (2023). Is ChatGPT a Good Recommender? A Preliminary Study. arXiv preprint arXiv:2304.10149. arxiv 2023 N/A ChatGPT
VQ-Rec Hou Y, He Z, McAuley J, et al. Learning vector-quantized item representation for transferable sequential recommenders[C]//Proceedings of the ACM Web Conference 2023. 2023: 1162-1171. ACM 2023 Python BERT
RankGPT Sun, W., Yan, L., Ma, X., Ren, P., Yin, D., & Ren, Z. (2023). Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agent. arXiv preprint arXiv:2304.09542. arxiv 2023 Python ChatGPT/4
GeneRec Wang, W., Lin, X., Feng, F., He, X., & Chua, T. S. (2023). Generative Recommendation: Towards Next-generation Recommender Paradigm. arXiv preprint arXiv:2304.03516. arxiv 2023 Python N/A
NIR Wang, L., & Lim, E. P. (2023). Zero-Shot Next-Item Recommendation using Large Pretrained Language Models. arXiv preprint arXiv:2304.03153. arxiv 2023 Python GPT-3.5
Chat-REC Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., & Zhang, J. (2023). Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System. arXiv preprint arXiv:2303.14524. arxiv 2023 N/A ChatGPT
N/A Sileo, D., Vossen, W., & Raymaekers, R. (2022, April). Zero-Shot Recommendation as Language Modeling. In Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022.. ECIR 2022 Python GPT-2
UniCRS Wang, X., Zhou, K., Wen, J. R., & Zhao, W. X. (2022, August). Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1929-1937). KDD 2022 Python GPT-2/ DialoGPT /BART
LLMRec Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, Chao Huang. arXiv preprint arXiv:2311.00423, 2023. WSDM 2024 Python ChatGPT

Supervised Fine-Tuning

Name Paper Venue Year Code LLM
TransRec Lin X, Wang W, Li Y, et al. A Multi-facet Paradigm to Bridge Large Language Model and Recommendation[J]. arXiv preprint arXiv:2310.06491, 2023. arxiv 2023 N/A BART-large and LLaMA-7B
RecSysLLM Chu, Z., Hao, H., Ouyang, X., Wang, S., Wang, Y., Shen, Y., ... & Li, S. (2023). Leveraging Large Language Models for Pre-trained Recommender Systems. arXiv preprint arXiv:2308.10837. arxiv 2023 N/A GLM-10B
BIGRec A Bi-Step Grounding Paradigm for Large Language Models in Recommendation Systems arxiv 2023 Python LLaMA
LLMCRS Feng, Yue, et al. A Large Language Model Enhanced Conversational Recommender System. arXiv preprint arXiv:2308.06212 (2023). arxiv 2023 N/A Flan-T5/LLaMA
GLRec Wu, L., Qiu, Z., Zheng, Z., Zhu, H., & Chen, E. (2023). Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations. arxiv 2023 N/A BELLE
GIRL Zheng, Z., Qiu, Z., Hu, X., Wu, L., Zhu, H., & Xiong, H. (2023). Generative Job Recommendations with Large Language Model. arxiv 2023 N/A BELLE
Amazon-M2 Jin, Wei et al. Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation. ArXiv abs/2307.09688 (2023) arxiv 2023 Project mT5
GenRec Ji, J., Li, Z., Xu, S., Hua, W., Ge, Y., Tan, J., & Zhang, Y. (2023). GenRec: Large Language Model for Generative Recommendation. arXiv e-prints, arXiv-2307. arxiv 2023 Python LLaMA
RecLLM Friedman, L., Ahuja, S., Allen, D., Tan, T., Sidahmed, H., Long, C., ... & Tiwari, M. (2023). Leveraging Large Language Models in Conversational Recommender Systems. arXiv preprint arXiv:2305.07961. arxiv 2023 N/A LaMDA(video)
DPLLM Carranza, A. G., Farahani, R., Ponomareva, N., Kurakin, A., Jagielski, M., & Nasr, M. (2023). Privacy-Preserving Recommender Systems with Synthetic Query Generation using Differentially Private Large Language Models. arXiv preprint arXiv:2305.05973. arxiv 2023 N/A T5
PBNR Li, X., Zhang, Y., & Malthouse, E. C. (2023). PBNR: Prompt-based News Recommender System. arXiv preprint arXiv:2304.07862. arxiv 2023 N/A T5
GPTRec Petrov, A. V., & Macdonald, C. (2023). Generative Sequential Recommendation with GPTRec. arXiv preprint arXiv:2306.11114. Gen-IR@SIGIR 2023 N/A GPT-2
CTRL Li X, Chen B, Hou L, et al. CTRL: Connect Tabular and Language Model for CTR Prediction[J]. arXiv preprint arXiv:2306.02841, 2023. arxiv 2023 N/A RoBERTa/GLM
UniTRec Mao, Z., Wang, H., Du, Y., & Wong, K. F. (2023). UniTRec: A Unified Text-to-Text Transformer and Joint Contrastive Learning Framework for Text-based Recommendation. arXiv preprint arXiv:2305.15756. ACL 2023 Python BART
ICPC Christakopoulou, K., Lalama, A., Adams, C., Qu, I., Amir, Y., Chucri, S., ... & Chen, M. (2023). Large Language Models for User Interest Journeys. arXiv preprint arXiv:2305.15498. arxiv 2023 N/A LaMDA
TransRec Fu, J., Yuan, F., Song, Y., Yuan, Z., Cheng, M., Cheng, S., ... & Pan, Y. (2023). Exploring Adapter-based Transfer Learning for Recommender Systems: Empirical Studies and Practical Insights. arXiv preprint arXiv:2305.15036. arxiv 2023 N/A RoBERTa
N/A Li, R., Deng, W., Cheng, Y., Yuan, Z., Zhang, J., & Yuan, F. (2023). Exploring the Upper Limits of Text-Based Collaborative Filtering Using Large Language Models: Discoveries and Insights. arXiv preprint arXiv:2305.11700. arxiv 2023 N/A OPT
PALR Chen, Z. (2023). PALR: Personalization Aware LLMs for Recommendation. arXiv preprint arXiv:2305.07622. arxiv 2023 N/A LLaMa
InstructRec Zhang, J., Xie, R., Hou, Y., Zhao, W. X., Lin, L., & Wen, J. R. (2023). Recommendation as instruction following: A large language model empowered recommendation approach. arXiv preprint arXiv:2305.07001. arxiv 2023 N/A FLAN-T5-3B
N/A Kang, W. C., Ni, J., Mehta, N., Sathiamoorthy, M., Hong, L., Chi, E., & Cheng, D. Z. (2023). Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction. arXiv preprint arXiv:2305.06474. arxiv 2023 N/A FLAN/ChatGPT
LSH Rahmani, S., Naghshzan, A., & Guerrouj, L. (2023). Improving Code Example Recommendations on Informal Documentation Using BERT and Query-Aware LSH: A Comparative Study. arXiv preprint arXiv:2305.03017. arxiv 2023 N/A BERT
TALLRec Bao, K., Zhang, J., Zhang, Y., Wang, W., Feng, F., & He, X. (2023). TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. arXiv preprint arXiv:2305.00447. arxiv 2023 Python Llama-7B
GPT4Rec Li, J., Zhang, W., Wang, T., Xiong, G., Lu, A., & Medioni, G. (2023). GPT4Rec: A Generative Framework for Personalized Recommendation and User Interests Interpretation. arXiv preprint arXiv:2304.03879. arxiv 2023 N/A GPT-2
IDvs.MoRec Yuan, Z., Yuan, F., Song, Y., Li, Y., Fu, J., Yang, F., ... & Ni, Y. (2023). Where to go next for recommender systems? id-vs. modality-based recommender models revisited. arXiv preprint arXiv:2303.13835. SIGIR 2023 Python BERT
GReaT Borisov, V., Seßler, K., Leemann, T., Pawelczyk, M., & Kasneci, G. (2022). Language models are realistic tabular data generators. arXiv preprint arXiv:2210.06280. ICLR 2023 Python GPT-2
M6-Rec Cui, Z., Ma, J., Zhou, C., Zhou, J., & Yang, H. (2022). M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv preprint arXiv:2205.08084. arxiv 2022 N/A M6
N/A Shen, T., Li, J., Bouadjenek, M. R., Mai, Z., & Sanner, S. (2023). Towards understanding and mitigating unintended biases in language model-driven conversational recommendation. Information Processing & Management, 60(1), 103139. Inf Process Manag 2023 Python BERT
P5 Geng, S., Liu, S., Fu, Z., Ge, Y., & Zhang, Y. (2022, September). Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on Recommender Systems (pp. 299-315). RecSys 2022 Python T5
PEPLER Li, L., Zhang, Y., & Chen, L. (2023). Personalized prompt learning for explainable recommendation. ACM Transactions on Information Systems, 41(4), 1-26. TOIS 2023 Python GPT-2
N/A Zhang, Y., Ding, H., Shui, Z., Ma, Y., Zou, J., Deoras, A., & Wang, H. (2021). Language models as recommender systems: Evaluations and limitations. NeurIPS workshop 2021 N/A BERT/GPT-2

Related Survey

Paper Venue Year
Large Language Models for Generative Recommendation: A Survey and Visionary Discussions arxiv 2023
Zhang, K., Cao, Q., Sun, F., Wu, Y., Tao, S., Shen, H., & Cheng, X. (2023). Robust Recommender System: A Survey and Future Directions. arXiv preprint arXiv:2309.02057. arxiv 2023
Li, L., Zhang, Y., Liu, D., & Chen, L. (2023). Large Language Models for Generative Recommendation: A Survey and Visionary Discussions. ArXiv. /abs/2309.01157 arxiv 2023
Chen, X., Li, Z., Pan, W., & Ming, Z. (2023). A Survey on Multi-Behavior Sequential Recommendation. arXiv preprint arXiv:2308.15701. arxiv 2023
Chen, J., Liu, Z., Huang, X., Wu, C., Liu, Q., Jiang, G., ... & Chen, E. (2023). When large language models meet personalization: Perspectives of challenges and opportunities. arXiv preprint arXiv:2307.16376. arxiv 2023
Fan, W., Zhao, Z., Li, J., Liu, Y., Mei, X., Wang, Y., ... & Li, Q. (2023). Recommender systems in the era of large language models (llms). arXiv preprint arXiv:2307.02046. arxiv 2023
Li, X., Zhang, Y., & Malthouse, E. C. (2023). A Preliminary Study of ChatGPT on News Recommendation: Personalization, Provider Fairness, Fake News. arXiv preprint arXiv:2306.10702. arxiv 2023
Lin, J., Dai, X., Xi, Y., Liu, W., Chen, B., Li, X., ... & Zhang, W. (2023). How Can Recommender Systems Benefit from Large Language Models: A Survey. arXiv preprint arXiv:2306.05817. arxiv 2023
Liu, P., Zhang, L., & Gulla, J. A. (2023). Pre-train, prompt and recommendation: A comprehensive survey of language modelling paradigm adaptations in recommender systems. arXiv preprint arXiv:2302.03735. arxiv 2023

Common Datasets

Name Scene Tasks Information URL
Amazon Review Commerce Seq Rec/CF Rec This is a large crawl of product reviews from Amazon. Ratings: 82.83 million, Users: 20.98 million, Items: 9.35 million, Timespan: May 1996 - July 2014 link
Amazon-M2 Commerce Seq Rec/CF Rec A large dataset of anonymized user sessions with their interacted products collected from multiple language sources at Amazon. It includes 3,606,249 train sessions, 361,659 test sessions, and 1,410,675 products. link
Steam Game Seq Rec/CF Rec Reviews represent a great opportunity to break down the satisfaction and dissatisfaction factors around games. Reviews: 7,793,069, Users: 2,567,538, Items: 15,474, Bundles: 615 link
MovieLens Movie General The dataset consists of 4 sub-datasets, which describe users' ratings to movies and free-text tagging activities from MovieLens, a movie recommendation service. link
Yelp Commerce General There are 6,990,280 reviews, 150,346 businesses, 200,100 pictures, 11 metropolitan areas, 908,915 tips by 1,987,897 users. Over 1.2 million business attributes like hours, parking, availability, etc. link
Douban Movie, Music, Book Seq Rec/CF Rec This dataset includes three domains, i.e., movie, music, and book, and different kinds of raw information, i.e., ratings, reviews, item details, user profiles, tags (labels), and date. link
MIND News General MIND contains about 160k English news articles and more than 15 million impression logs generated by 1 million users. Every news contains textual content including title, abstract, body, category, and entities. link
U-NEED Commerce Conversation Rec U-NEED consists of 7,698 fine-grained annotated pre-sales dialogues, 333,879 user behaviors, and 332,148 product knowledge tuples. link
PixelRec Short Video Seq Rec/CF Rec PixelRec is a large dataset of cover images collected from a short video recommender system, comprising approximately 200 million user image interactions, 30 million users, and 400,000 video cover images. The texts and other aggregated attributes of videos are also included. link

Single card (RTX 3090) debuggable generative language models that support Chinese corpus

Some open-source and effective projects can be adpated to the recommendation systems based on Chinese textual data. Especially for the individual researchers !

Project Year
baichuan-7B 2023
YuLan-chat 2023
Chinese-LLaMA-Alpaca 2023
THUDM/ChatGLM-6B 2023
FreedomIntelligence/LLMZoo Phoenix 2023
bloomz-7b1 2023
LianjiaTech/BELLE 2023

Hope our conclusion can help your work.