/CF-Font

Official repository for CF-Font: Content Fusion for Few-shot Font Generation.

Primary LanguagePython

CF-Font


teaser

By Chi Wang, Min Zhou, Tiezheng Ge, Yuning Jiang, Hujun Bao, Weiwei Xu

This repo is the official implementation of CF-Font: Content Fusion for Few-shot Font Generation accepted by CVPR 2023.

Video demos for Style Interpolation

  • A poem demo
cffont_style_interpolation_part2_small.mp4
  • Comparison with DG-Font
cffont_style_interpolation_part1_small.mp4

Dependencies

Libarary

pytorch (>=1.0)
tqdm
numpy
opencv-python  
scipy
sklearn
matplotlib  
pillow  
tensorboardX
scikit-image
scikit-learn
pytorch-fid
lpips
pandas
kornia

DCN

please refer to https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 to install the dependencies of deformable convolution.

Dataset

方正字库 provides free font download for non-commercial users.

How to run

  1. prepare dataset
    • Put your font files to a folder and character file to charset
      .
      ├── data
      │   └── fonts
      │       ├── Font_Seen240
      │       |   ├── 000_xxxx.ttf
      │       |   ├── 001_xxxx.ttf
      │       |   ├── ...
      │       |   └── 239_xxxx.ttf
      │       └── Font_Unseen60
      ├── charset
      │   ├── check_overlap.py
      │   ├── GB2312_CN6763.txt # all characterx used in TRAIN and TEST
      │   ├── FS16.txt          # Few-Shot characters, should not be included in TESTxxx.txt for fairness (can be included in TRAINxxx.txt) 
      │   ├── TEST5646.txt      # all character used in TRAIN
      │   └── TRAIN800.txt      # all character used in TEST
      └── ...
    • Generate dataset with the full standard Chinese character set (6763 in total) of GB/T 2312 :
      sh scripts/01a_gen_date.sh
      After that, your file tree should be:
      .
      ├── data
      │   ├── fonts
      │   └── imgs
      │       ├── Seen240_S80F50_FULL
      │       |   ├── id_0
      │       │   │   ├── 0000.png
      │       │   │   ├── 0001.png
      │       │   │   ├── ...
      │       │   │   └── 6762.png
      │       |   ├── id_1
      │       |   ├── ...
      │       |   └── id_239
      │       └── Unseen60_S80F50_FULL
      ├── charset
      └── ...
    • Get subsets with train, test and fewshot character txts.
      sh scripts/01b_copy_subset.sh
      After that, your file tree should be:
      .
      ├── data
      │   ├── fonts
      │   └── imgs
      │       ├── Seen240_S80F50_FS16
      │       |   ├── id_0
      │       │   │   ├── 0000.png
      │       │   │   ├── 0001.png
      │       │   │   ├── ...
      │       │   │   └── 0015.png
      │       |   ├── id_1
      │       |   ├── ...
      │       |   └── id_239
      │       ├── Seen240_S80F50_FULL
      │       ├── Seen240_S80F50_TEST5646
      │       |   ├── id_0
      │       │   │   ├── 0000.png
      │       │   │   ├── 0001.png
      │       │   │   ├── ...
      │       │   │   └── 5645.png
      │       |   ├── id_1
      │       |   ├── ...
      │       |   └── id_239
      │       ├── Seen240_S80F50_TRAIN800
      │       |   ├── id_0
      │       │   │   ├── 0000.png
      │       │   │   ├── 0001.png
      │       │   │   ├── ...
      │       │   │   └── 0799.png
      │       |   ├── id_1
      │       |   ├── ...
      │       |   └── id_239
      │       ├── Unseen60_S80F50_FS16
      │       ├── Unseen60_S80F50_FULL
      │       ├── Unseen60_S80F50_TEST5646
      │       └── Unseen60_S80F50_TRAIN800
      ├── charset
      └── ...
  2. Train base network
    # enable PC-WDL with the flag `--wdl` and PC-PKL with the flag `-pkl` 
    sh scripts/02a_run_ddp.sh
    Option: In order to evaluate the training of the network, we can use the script scripts/option_run_inf_dgfont.sh to inference.
  3. Train CF-Font
    • Select basis. Basis fonts better contain a standard font, like song.
      • Manually. If you want select manually, please put basis ids (one line, seperated with a space) to a txt file, like:
        0 1 2 3 4 5 6 7 8 9
        
      • By clustering.
        # Content embeddings collection 
        sh scripts/03a_get_content_embeddings.sh
        
        # obtain basis ids through clustering
        sh scripts/03b_cluster_get_cf_basis.sh
    • Get subsets with basis font ids.
      sh scripts/03c_copy_basis_subset.sh
    • Get basis weight for content fusion:
      sh scripts/03d_cal_cf_weights.sh
    • Train CF-Font
      # make a folder for CF-Font training, and copy the pretrain model here.
      sh scripts/03e_init_cf_env.sh
      
      # train CF-Font
      sh scripts/03f_run_ddp_cf.sh
  4. Inference and evaluation:
    # Inference (SII with the flag `--ft`)
    sh scripts/04a_run_inf_cf.sh
    
    # Evaluation
    ## get scores for each font
    sh scripts/04b_get_scores.sh
    
    ## get mean scores (use `-j` to skip the unwanted fonts, like basis fonts)
    sh scripts/04c_cal_mean_scores.sh

Citation

@inproceedings{CF-Font,
    title={CF-Font: Content Fusion for Few-shot Font Generation},
    author={Chi Wang, Min Zhou, Tiezheng Ge, Yuning Jiang, Hujun Bao, Weiwei Xu},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2023}
}

Acknowledgements

We would like to thank Alimama (Alibaba Group) and State Key Lab of CAD&CG (Zhejiang University) for their support and advices in our project. Our code is based on DG-Font.

Contact

If you have any questions, please feel free to contact wangchi1995@zju.edu.cn.