Python version 3.7.16.
Create suitable conda environment:
conda env create -f environment.yml
For the fashionMNIST dataset, our training data contains three categories: normal, non_target, and target, which need to be explicitly specified in the sh command.
exec -a "BAD_420" python main.py --model_type BiasedAD --dir_path ./result/fmnist --dataset_name fashionmnist --normal_class 4 --non_target_outlier_class 2 --target_outlier_class 0 --gpu 2 --random_seed 0&
--non_target_outlier_class
, the number of non-target anomalies is set to 0 during runtime. The required sampling count is set to default 100 and does not need to be explicitly declared.
exec -a "BADM_420" python main.py --model_type BiasedADM --dir_path ./result/fmnist --dataset_name fashionmnist --normal_class 4 --non_target_outlier_class 2 --target_outlier_class 0 --gpu 2 --random_seed 0 &
exec -a "BAD_nb15" python main.py --model_type BiasedAD --dir_path ./result/nb15 --dataset_name nb15 --gpu 2 --random_seed 0&
--sample_count
compared to --sample_count 1000
exec -a "BADM_nb15" python main.py --model_type BiasedADM --dir_path ./result/nb15 --dataset_name nb15 --gpu 0 --sample_count 1000 --random_seed 0 &