/IDN-TensorFlow

TensorFlow Implementation of "Fast and Accurate Single Image Super-Resolution via Information Distillation Network" (CVPR 2018)

Primary LanguagePython

IDN-TensorFlow


Introduction

This repository is TensorFlow implementation of IDN(CVPR16).

You can see more details from paper and author's project repository


Network Structure

IDN-TensorFlow/model/network.py

IDN Network Structure

  • FBlock : Feqture extraction block

FBlock

  • DBlock : Information Distillation block

    • Consists of Enhancement unit and Compression unit

DBlock

  • RBlock : Reconstruction block

    • De-convolution

RBlock

  • LR denotes Low Resolution image
  • SR denotes reconstructed super resolution image

Training

Loss Function

_loss_function(self, reg_parameter) in IDN-TensorFlow/model/___init__.py

  • Pre-training stage : L2 loss


Loss(W)=\frac{1}{2}||y-f(x)||^{2}

  • Fine tuning stage : L1 loss


Loss(W)=|r-f(x)|

  • Regularization

    • L2 regularization

    
reg(W)=\frac{\lambda}{2}\sum_{w \in W} {||w||^{2}}

  • Notations

    • W : Weights in IDN
    • y : ground truth (original high resolution image, HR)
    • x : interpolated low resolution image (ILR)
    • f(x) : reconstructed super resolution image
    • r : residual between HR and ILR
      • r = y-x
    • \lambda : regularization parameter
      • \lambda : 0.0001

Optimization

_optimization_function(self, grad_clip, momentum_rate) in IDN-TensorFlow/model/___init__.py

  • Optimization Method

  • Weight Initialization

  • Learning Rate

    • Initial Learning rate : 1e-4
  • Learning Rate Decay

    • Learning rate decay is applied in tine tuning stage

    learning rage in training

    • Learning rate is decreased by factor of 10 for every 250 epochs
  • Epochs

    • Pre-training stage: 100
    • Fine tuning stage : 600

Data Set

Training Data

IDN-TensorFlow/data/generate_dataset/train_data.m

  • 291 images

    • Download from Author's Repository
  • Data Augmentations (Rotation, flip) were used

  • Scale Factor : \times 2, \times 3, \times 4

  • Patch size

scale Pre-Training (LR / GT) Fine Tuning (LR / GT)
2 29 / 58 39 / 78
3 15 / 45 26 / 78
4 11 / 44 19 / 76
  • Batch size : 64

Testing Data

IDN-TensorFlow/data/generate_dataset/test_data.m

  • Set5, Set14, B100, Urban100
  • Bicubic interpolation is used for LR data acquisition
  • Scale Factor : \times 2, \times 3, \times 4

Results

Validation

PSNR performance plot on Set5

  • Scale 2

    scale2-pre scale-2-fine
    Pre-training Fine Tuning
  • Scale 3

    scale-3-pre scale-3-fine
    Pre-training Fine Tuning
  • Scale 4

    scale-4-pre scale-4-fine
    Pre-training Fine Tuning

Objective Quality Assessment

Methods

  • Bicubic Interpolation
    • imresize(..., ..., 'bicubic') in Matlab
  • IDN(Original)
    • Author's Caffe implementation [Code]
  • IDN (TensorFlow)
    • TensorFlow implementation
    • Train Details for Comparison
      • Data Augmentation
        • Rotation : 90°, 180°, 270°
        • Flip : left / right
        • Down scale : 0.9, 0.8, 0.7, 0.6

Average PSNR/SSIM

  • Set5
  • Pre-Training
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 33.68 / 0.9304 37.83 / 0.9600 37.56 / 0.9592
\times 3 30.40 / 0.8682 34.11 / 0.9253 33.79 / 0.9213
\times 4 28.43 / 0.8104 31.82 / 0.8903 31.24 / 0.8797
  • Fine Tuning
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 33.68 / 0.9304 37.83 / 0.9600 37.72 / 0.9600
\times 3 30.40 / 0.8682 34.11 / 0.9253 33.92 / 0.9233
\times 4 28.43 / 0.8104 31.82 / 0.8903 31.39 / 0.8846

  • Set14
  • Pre-Training
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 30.24 / 0.8693 33.30 / 0.9148 33.11 / 0.9136
\times 3 27.54 / 0.7746 29.99 / 0.8354 29.68 / 0.8312
\times 4 26.00 / 0.7029 28.25 / 0.7730 27.92 / 0.7664
  • Fine Tuning
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 30.24 / 0.8693 33.30 / 0.9148 33.14 / 0.9142
\times 3 27.54 / 0.7746 29.99 / 0.8354 29.71 / 0.8313
\times 4 26.00 / 0.7029 28.25 / 0.7730 27.93 / 0.7679

  • B100
  • Pre-Training
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 29.56 / 0.8442 32.08 / 0.8985 31.94 / 0.8974
\times 3 27.21 / 0.7401 28.95 / 0.8013 28.75 / 0.7978
\times 4 25.96 / 0.6697 27.41 / 0.7297 27.20 / 0.7248
  • Fine Tuning
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 29.56 / 0.8442 32.08 / 0.8985 31.99 / 0.8982
\times 3 27.21 / 0.7401 28.95 / 0.8013 28.78 / 0.7988
\times 4 25.96 / 0.6697 27.41 / 0.7297 27.17 / 0.7257

  • Urban100
  • Pre-Training
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 26.88 / 0.8410 31.27 / 0.9196 30.82 / 0.9157
\times 3 24.46 / 0.7358 27.42 / 0.8359 26.85 / 0.8240
\times 4 23.14 / 0.6588 25.41 / 0.7632 24.90 / 0.7467
  • Fine Tuning
scale Bicubic IDN (Original) IDN (TensorFlow)
\times 2 26.88 / 0.8410 31.27 / 0.9196 30.96 / 0.9173
\times 3 24.46 / 0.7358 27.42 / 0.8359 26.95 / 0.8271
\times 4 23.14 / 0.6588 25.41 / 0.7632 24.89 / 0.7500

Visual Quality

  • "img002" of Urban100 for scale 2
Ground Truth Bicubic IDN (TensorFlow) Pre-train IDN (TensorFlow) Fine Tuning
img002-gt img002-bic img002-pre img002-pre
img002-gt-det img002-bic-det img002-sr-pre-det img002-sr-pre-det

Difference with Authors Implementation

Image Size

Epochs and Learning rate decay step

asdf


Usage

On Windows

  • run.bat

On Linux

  • run.sh

Training Command

Examples in scale 2

  • in run.bat/sh

    • Pre-training

      python main.py --model_name=idn_pre_x2 --is_train=True --scale=2 --pretrain=False --epochs=100 --data_path=data/train_data/idn_train_x2.h5

    • Fine Tuning

      python main.py --model_name=idn_x2 --is_train=True --scale=2 --pretrain=True --pretrained_model_name=idn_pre_x2 --learning_rate_decay=True --decay_step=250 --epochs=600 --data_path=data/train_data/idn_fine_tuning_x2.h5

If you want to change other parameters for training, please see the file

IDN-TensorFlow/model/configurations.py

Testing Command

Examples in scale 2

in run.bat/sh

python main.py --model_name=idn_pre_x2 --is_train=False --scale=2

Trained checkpoint in experiments

  • asdf

Training dataset

  • asdf

math equations are converted with upmath.me