/RMNet

Implementation of "Efficient Regional Memory Network for Video Object Segmentation". (Xie et al., CVPR 2021)

Primary LanguagePythonMIT LicenseMIT

RMNet

This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.

Language grade: Python Total alerts

Overview

Cite this work

@inproceedings{xie2021efficient,
  title={Efficient Regional Memory Network for Video Object Segmentation},
  author={Xie, Haozhe and 
          Yao, Hongxun and 
          Zhou, Shangchen and 
          Zhang, Shengping and 
          Sun, Wenxiu},
  booktitle={CVPR},
  year={2021}
}

Datasets

We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:

Pretrained Models

The pretrained models for DAVIS and YouTube-VOS are available as follows:

Prerequisites

Clone the Code Repository

git clone https://github.com/hzxie/RMNet.git

Install Python Denpendencies

cd RMNet
pip install -r requirements.txt

Build PyTorch Extensions

NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.

RMNET_HOME=`pwd`

cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user

cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user

Precompute the Optical Flow

Update Settings in config.py

You need to update the file path of the datasets:

__C.DATASETS                                     = edict()
__C.DATASETS.DAVIS                               = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH            = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH                 = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH          = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH        = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS                         = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH      = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH           = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH    = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH  = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC                          = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH       = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH            = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH     = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD                               = edict()
__C.DATASETS.ECSSD.N_IMAGES                      = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH                 = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH          = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K                             = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH          = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH               = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH        = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO                              = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH           = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH                = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH         = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K                              = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH           = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH                = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH         = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'

# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET                        = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']  # Pretrain
__C.DATASET.TRAIN_DATASET                        = ['YOUTUBE_VOS', 'DAVISx5']                    # Fine-tune
__C.DATASET.TEST_DATASET                         = 'DAVIS'

# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK                                = 'RMNet'

Get Started

To train RMNet, you can simply use the following command:

python3 runner.py

To test RMNet, you can use the following command:

python3 runner.py --test --weights=/path/to/pretrained/model.pth

License

This project is open sourced under MIT license.