/smlang-rs

A State Machine Language DSL procedual macro for Rust

Primary LanguageRustApache License 2.0Apache-2.0

smlang: A no_std State Machine Language DSL in Rust

Build Status Documentation

A state machine language DSL based on the syntax of Boost-SML.

Aim

The aim of this DSL is to facilitate the use of state machines, as they quite fast can become overly complicated to write and get an overview of.

Transition DSL

The DSL is defined as follows:

statemachine!{
    transitions: {
        *SrcState1 + Event1 [ guard1 ] / action1 = DstState2, // * denotes starting state
        SrcState2 + Event2 [ guard2 ] / action2 = DstState1,
    }
    // ...
}

Where guard and action are optional and can be left out. A guard is a function which returns true if the state transition should happen, and false if the transition should not happen, while action are functions that are run during the transition which are guaranteed to finish before entering the new state.

This implies that any state machine must be written as a list of transitions.

The DSL supports wildcards and pattern matching for input states similar to rust pattern matching:

statemachine!{
    transitions: {
        *State1 | State3 + ToState2 = State2,
        State1 | State2 + ToState3 = State3,
        _ + ToState4 = State4,
        State4 + ToState1 = State1,
    }
    // ...
}

Which is equivalent to:

statemachine!{
    transitions: {
        *State1 + ToState2 = State2,
        State3 + ToState2 = State2,

        State1 + ToState3 = State3,
        State2 + ToState3 = State3,

        State1 + ToState4 = State4,
        State2 + ToState4 = State4,
        State3 + ToState4 = State4,
        State4 + ToState4 = State4,

        State4 + ToState1 = State1,
    }
    // ...
}

See example examples/input_state_pattern_match.rs for a usage example.

State machine context

The state machine needs a context to be defined. The StateMachineContext is generated from the statemachine! proc-macro and is what implements guards and actions, and data that is available in all states within the state machine and persists between state transitions:

statemachine!{
    transitions: {
        State1 + Event1 = State2,
    }
    // ...
}

pub struct Context;

impl StateMachineContext for Context {}

fn main() {
    let mut sm = StateMachine::new(Context);

    // ...
}

See example examples/context.rs for a usage example.

State data

Any state may have some data associated with it:

pub struct MyStateData(pub u32);

statemachine!{
    transitions: {
        State1(MyStateData) + Event1 = State2,
    }
    // ...
}

See example examples/state_with_data.rs for a usage example.

If the starting state contains data, this data must be provided after the context when creating a new machine.

pub struct MyStateData(pub u32);

statemachine!{
    transitions: {
        State2 + Event2 / action = State1(MyStateData),
        *State1(MyStateData) + Event1 = State2,
        // ...
    }
    // ...
}

// ...

let mut sm = StateMachine::new(Context, MyStateData(42));

State data may also have associated lifetimes which the statemachine! macro will pick up and add the States enum and StateMachine structure. This means the following will also work:

pub struct MyStateData<'a>(&'a u32);

statemachine! {
    transitions: {
        *State1 + Event1 / action = State2,
        State2(MyStateData<'a>) + Event2 = State1,
        // ...
    }
    // ...
}

See example examples/state_with_reference_data.rs for a usage example.

Event data

Data may be passed along with an event into the guard and action:

pub struct MyEventData(pub u32);

statemachine!{
    transitions: {
        State1 + Event1(MyEventData) [guard] = State2,
    }
    // ...
}

Event data may also have associated lifetimes which the statemachine! macro will pick up and add the Events enum. This means the following will also work:

pub struct MyEventData<'a>(pub &'a u32);

statemachine!{
    transitions: {
        State1 + Event1(MyEventData<'a>) [guard1] = State2,
        State1 + Event2(&'a [u8]) [guard2] = State3,
    }
    // ...
}

See example examples/event_with_data.rs for a usage example.

Guard and Action syntax

See example examples/guard_action_syntax.rs for a usage-example.

Async Guard and Action

See example examples/async.rs for a usage-example.

State Machine Examples

Here are some examples of state machines converted from UML to the State Machine Language DSL. Runnable versions of each example is available in the examples folder. The .pngs are generated with the graphviz feature.

Linear state machine

alt text

DSL implementation:

statemachine!{
    transitions: {
        *State1 + Event1 = State2,
        State2 + Event2 = State3,
    }
}

This example is available in ex1.rs.

Looping state machine

alt text

DSL implementation:

statemachine!{
    transitions: {
        *State1 + Event1 = State2,
        State2 + Event2 = State3,
        State3 + Event3 = State2,
    }
}

This example is available in ex2.rs.

Using guards and actions

alt text

DSL implementation:

statemachine!{
    transitions: {
        *State1 + Event1 [guard] / action = State2,
    }
}

This example is available in ex3.rs.

Helpers

Auto-derive certain traits for states and events

Setting derive_events and derive_states fields to an array of traits adds a derive expression to Events and States enums respectively. To derive Display, use derive_more::Display.

use core::Debug;
use derive_more::Display;
// ...
statemachine!{
    derive_states: [Debug, Display],
    derive_events: [Debug, Display],
    transitions: {
        *State1 + Event1 = State2,
    }
}

// ...

println!("Current state: {}", sm.state().unwrap());
println!("Expected state: {}", States::State1);
println!("Sending event: {}", Events::Event1);

// ...

Hooks for logging events, guards, actions, and state transitions

The StateMachineContext trait defines (and provides default, no-op implementations for) functions that are called for each event, guard, action, and state transition. You can provide your own implementations which plug into your preferred logging mechanism.

fn log_process_event(&self, current_state: &States, event: &Events) {}
fn log_guard(&self, guard: &'static str, result: &Result<(), ()>) {}
fn log_action(&self, action: &'static str) {}
fn log_state_change(&self, new_state: &States) {}

See examples/state_machine_logger.rs for an example which uses derive_states and derive_events to derive Debug implementations for easy logging.

Contributors

List of contributors in alphabetical order:


License

Licensed under either of

at your option.