/ForschungsArbeit

This project evaluates the robustness of image classification models against adversarial attacks using two key metrics: Adversarial Distance and CLEVER. The study employs variants of the WideResNet model, including a standard and a corruption-trained robust model, trained on the CIFAR-10 dataset. Key insights reveal that the CLEVER Score serves as

Primary LanguageJupyter Notebook

No issues in this repository yet.