/nano-gpt-mitos

Primary LanguagePythonMIT LicenseMIT

This repo is based on https://github.com/karpathy/nanoGPT (Original repo)

WINDOWS TERMINAL

  • python3 -m venv venv

  • cd venv

  • cd Scripts

  • activate.bat

  • cd ../..

  • pip install -r requirements.txt

  • git clone https://github.com/cccntu/minLoRA.git

  • cd minLoRA

  • pip install -e .

  • python data/mitos/prepare.py

  • python train.py config/train_mitos.py --compile=False

  • python sample.py --out_dir=out-mitos

  • deactivate.bat

UBUNTU TERMINAL

With installation of venv

in windows cmd : pip install venv in ubuntu terminal :

  • cd /mnt/c/Users/user/Desktop/LoRAnanoGPT

  • python3 -m venv venv

  • source venv_ubuntu/bin/activate

  • pip install -r requirements.txt

  • git clone https://github.com/cccntu/minLoRA.git

  • cd minLoRA

  • pip install -e .

  • python data/mitos/prepare.py

  • python train.py config/train_mitos.py

  • python sample.py --out_dir=out-mitos

  • deactivate

How to run it in ubuntu terminal

  • cd /mnt/c/Users/user/Desktop/LoRAnanoGPT
  • source venv_ubuntu/bin/activate
  • python data/mitos/prepare.py
  • python train.py config/train_mitos.py
  • python sample.py --out_dir=out-mitos
  • deactivate

- python data/mitos/prepare.py

length of dataset in characters: 300,407 all the unique characters: "%&'(),-./0123456789:;>ACDEFGHIKMNOPRSTUVXYabcdefghiklmnoprstuvwxy«»΄ΆΈΌΐΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩάέήίαβγδεζηθικλμνξοπρςστυφχψωϊϋόύώϥ–‘’€∆ vocab size: 139 train has 270,366 tokens val has 30,041 tokens

Results after training the model

- python train.py config/train_mitos.py :

Overriding config with config/train_mitos.py:

train a miniature character-level mitos model

good for debugging and playing on macbooks and such

out_dir = 'out-mitos' eval_interval = 250 # keep frequent because we'll overfit eval_iters = 200 log_interval = 10 # don't print too too often

we expect to overfit on this small dataset, so only save when val improves

always_save_checkpoint = False

wandb_log = False # override via command line if you like wandb_project = 'mitos' wandb_run_name = 'mini-gpt'

dataset = 'mitos' batch_size = 64 block_size = 256 # context of up to 256 previous characters

baby GPT model :)

n_layer = 6 n_head = 6 n_embd = 384 dropout = 0.2

learning_rate = 1e-3 # with baby networks can afford to go a bit higher max_iters = 5000 lr_decay_iters = 5000 # make equal to max_iters usually min_lr = 1e-4 # learning_rate / 10 usually beta2 = 0.99 # make a bit bigger because number of tokens per iter is small

warmup_iters = 100 # not super necessary potentially

on macbook also add

device = 'cuda' # run on cpu only compile = False # do not torch compile the model

use_lora = False found vocab_size = 139 (inside data/mitos/meta.pkl) Initializing a new model from scratch WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 number of parameters: 10.68M using fused AdamW: True step 0: train loss 5.0026, val loss 5.0026 iter 0: loss 5.0015, time 37493.07ms, mfu -100.00% iter 10: loss 3.6714, time 6717.21ms, mfu 2.22% iter 20: loss 2.9807, time 6717.40ms, mfu 2.22% iter 30: loss 2.6445, time 6715.78ms, mfu 2.22% iter 40: loss 2.4951, time 6728.59ms, mfu 2.22% iter 50: loss 2.4438, time 6728.94ms, mfu 2.22% iter 60: loss 2.3572, time 6731.42ms, mfu 2.22% iter 70: loss 2.3445, time 6727.20ms, mfu 2.22% iter 80: loss 2.2884, time 6727.45ms, mfu 2.22% iter 90: loss 2.2149, time 6729.26ms, mfu 2.22% iter 100: loss 2.1156, time 6728.40ms, mfu 2.22% iter 110: loss 1.9825, time 6730.61ms, mfu 2.22% iter 120: loss 1.9240, time 6729.86ms, mfu 2.22% iter 130: loss 1.8033, time 6729.76ms, mfu 2.22% iter 140: loss 1.7511, time 6730.19ms, mfu 2.22% iter 150: loss 1.6238, time 6733.62ms, mfu 2.22% iter 160: loss 1.5409, time 6729.79ms, mfu 2.22% iter 170: loss 1.4590, time 6729.54ms, mfu 2.22% iter 180: loss 1.3530, time 6728.96ms, mfu 2.22% iter 190: loss 1.2371, time 6727.71ms, mfu 2.22% iter 200: loss 1.1152, time 6729.97ms, mfu 2.22% iter 210: loss 1.1115, time 6729.37ms, mfu 2.22% iter 220: loss 1.0531, time 6729.09ms, mfu 2.22% iter 230: loss 1.0697, time 6730.29ms, mfu 2.22% iter 240: loss 0.9510, time 6727.95ms, mfu 2.22% step 250: train loss 0.7300, val loss 0.9303 saving checkpoint to out-mitos iter 250: loss 0.8230, time 31866.95ms, mfu 2.05% iter 260: loss 0.8156, time 6725.42ms, mfu 2.06% iter 270: loss 0.8446, time 6724.22ms, mfu 2.08% iter 280: loss 0.8012, time 6727.11ms, mfu 2.09% iter 290: loss 0.7105, time 6723.35ms, mfu 2.11% iter 300: loss 0.6672, time 6723.76ms, mfu 2.12% iter 310: loss 0.5916, time 6725.29ms, mfu 2.13% iter 320: loss 0.6139, time 6724.69ms, mfu 2.14% iter 330: loss 0.5327, time 6722.52ms, mfu 2.15% iter 340: loss 0.5076, time 6723.97ms, mfu 2.15% iter 350: loss 0.5089, time 6725.06ms, mfu 2.16% iter 360: loss 0.4364, time 6730.54ms, mfu 2.17% iter 370: loss 0.4583, time 6724.36ms, mfu 2.17% iter 380: loss 0.4202, time 6724.55ms, mfu 2.18% iter 390: loss 0.3641, time 6721.86ms, mfu 2.18% iter 400: loss 0.3386, time 6724.49ms, mfu 2.19% iter 410: loss 0.3309, time 6724.42ms, mfu 2.19% iter 420: loss 0.2991, time 6723.34ms, mfu 2.19% iter 430: loss 0.2731, time 6724.40ms, mfu 2.20% iter 440: loss 0.2669, time 6729.39ms, mfu 2.20% iter 450: loss 0.2502, time 6723.64ms, mfu 2.20% iter 460: loss 0.2169, time 6722.89ms, mfu 2.20% iter 470: loss 0.2061, time 6725.34ms, mfu 2.20% iter 480: loss 0.2038, time 6724.41ms, mfu 2.21% iter 490: loss 0.1844, time 6724.94ms, mfu 2.21% step 500: train loss 0.0887, val loss 0.6668 saving checkpoint to out-mitos iter 500: loss 0.1755, time 31863.33ms, mfu 2.03% iter 510: loss 0.1812, time 6724.03ms, mfu 2.05% iter 520: loss 0.1638, time 6722.28ms, mfu 2.07% iter 530: loss 0.1558, time 6725.69ms, mfu 2.08% iter 540: loss 0.1544, time 6724.83ms, mfu 2.10% iter 550: loss 0.1387, time 6725.69ms, mfu 2.11% iter 560: loss 0.1342, time 6724.21ms, mfu 2.12% iter 570: loss 0.1348, time 6729.97ms, mfu 2.13% iter 580: loss 0.1263, time 6726.63ms, mfu 2.14% iter 590: loss 0.1156, time 6727.13ms, mfu 2.15% iter 600: loss 0.1149, time 6725.48ms, mfu 2.16% iter 610: loss 0.1136, time 6725.03ms, mfu 2.16% iter 620: loss 0.1094, time 6725.57ms, mfu 2.17% iter 630: loss 0.1079, time 6727.64ms, mfu 2.17% iter 640: loss 0.1003, time 6723.03ms, mfu 2.18% iter 650: loss 0.0967, time 6724.83ms, mfu 2.18% iter 660: loss 0.0954, time 6727.26ms, mfu 2.19% iter 670: loss 0.0925, time 6724.95ms, mfu 2.19% iter 680: loss 0.0935, time 6725.25ms, mfu 2.19% iter 690: loss 0.0878, time 6725.45ms, mfu 2.20% iter 700: loss 0.0925, time 6725.18ms, mfu 2.20% iter 710: loss 0.0876, time 6725.40ms, mfu 2.20% iter 720: loss 0.0906, time 6724.39ms, mfu 2.20% iter 730: loss 0.0862, time 6725.58ms, mfu 2.20% iter 740: loss 0.0888, time 6727.44ms, mfu 2.21% step 750: train loss 0.0515, val loss 0.8490 iter 750: loss 0.0845, time 31374.31ms, mfu 2.03% iter 760: loss 0.0843, time 6723.29ms, mfu 2.05% iter 770: loss 0.0821, time 6717.46ms, mfu 2.07% iter 780: loss 0.0789, time 6717.56ms, mfu 2.08% iter 790: loss 0.0757, time 6719.38ms, mfu 2.10% iter 800: loss 0.0778, time 6719.46ms, mfu 2.11% iter 810: loss 0.0771, time 6717.53ms, mfu 2.12% iter 820: loss 0.0764, time 6716.43ms, mfu 2.13% iter 830: loss 0.0741, time 6717.58ms, mfu 2.14% iter 840: loss 0.0737, time 6716.97ms, mfu 2.15% iter 850: loss 0.0689, time 6718.95ms, mfu 2.16% iter 860: loss 0.0657, time 6716.74ms, mfu 2.16% iter 870: loss 0.0718, time 6719.53ms, mfu 2.17% iter 880: loss 0.0686, time 6716.89ms, mfu 2.18% iter 890: loss 0.0671, time 6718.53ms, mfu 2.18% iter 900: loss 0.0702, time 6717.45ms, mfu 2.18% iter 910: loss 0.0638, time 6717.00ms, mfu 2.19% iter 920: loss 0.0657, time 6716.81ms, mfu 2.19% iter 930: loss 0.0691, time 6717.35ms, mfu 2.20% iter 940: loss 0.0660, time 6716.34ms, mfu 2.20% iter 950: loss 0.0692, time 6720.66ms, mfu 2.20% iter 960: loss 0.0676, time 6718.24ms, mfu 2.20% iter 970: loss 0.0638, time 6717.95ms, mfu 2.21% iter 980: loss 0.0640, time 6716.88ms, mfu 2.21% iter 990: loss 0.0641, time 6716.43ms, mfu 2.21% step 1000: train loss 0.0464, val loss 0.9179 iter 1000: loss 0.0639, time 31321.06ms, mfu 2.04% iter 1010: loss 0.0655, time 6716.85ms, mfu 2.05% iter 1020: loss 0.0611, time 6717.68ms, mfu 2.07% iter 1030: loss 0.0619, time 6718.20ms, mfu 2.09% iter 1040: loss 0.0611, time 6716.65ms, mfu 2.10% iter 1050: loss 0.0609, time 6717.87ms, mfu 2.11% iter 1060: loss 0.0617, time 6716.99ms, mfu 2.12% iter 1070: loss 0.0606, time 6717.37ms, mfu 2.13% iter 1080: loss 0.0636, time 6717.05ms, mfu 2.14% iter 1090: loss 0.0627, time 6720.84ms, mfu 2.15% iter 1100: loss 0.0594, time 6717.38ms, mfu 2.16% iter 1110: loss 0.0587, time 6718.39ms, mfu 2.16% iter 1120: loss 0.0618, time 6718.43ms, mfu 2.17% iter 1130: loss 0.0582, time 6716.16ms, mfu 2.18% iter 1140: loss 0.0571, time 6716.58ms, mfu 2.18% iter 1150: loss 0.0592, time 6719.04ms, mfu 2.19% iter 1160: loss 0.0578, time 6726.71ms, mfu 2.19% iter 1170: loss 0.0560, time 6728.11ms, mfu 2.19% iter 1180: loss 0.0579, time 6725.02ms, mfu 2.20% iter 1190: loss 0.0562, time 6720.15ms, mfu 2.20% iter 1200: loss 0.0579, time 6725.00ms, mfu 2.20% iter 1210: loss 0.0583, time 6723.88ms, mfu 2.20% iter 1220: loss 0.0574, time 6727.41ms, mfu 2.20% iter 1230: loss 0.0564, time 6723.95ms, mfu 2.21% iter 1240: loss 0.0562, time 6724.17ms, mfu 2.21% step 1250: train loss 0.0440, val loss 1.0048 iter 1250: loss 0.0568, time 31386.08ms, mfu 2.03% iter 1260: loss 0.0531, time 6725.87ms, mfu 2.05% iter 1270: loss 0.0577, time 6726.49ms, mfu 2.07% iter 1280: loss 0.0580, time 6725.54ms, mfu 2.09% iter 1290: loss 0.0552, time 6724.90ms, mfu 2.10% iter 1300: loss 0.0558, time 6729.79ms, mfu 2.11% iter 1310: loss 0.0525, time 6725.57ms, mfu 2.12% iter 1320: loss 0.0567, time 6724.92ms, mfu 2.13% iter 1330: loss 0.0550, time 6724.82ms, mfu 2.14% iter 1340: loss 0.0532, time 6724.93ms, mfu 2.15% iter 1350: loss 0.0555, time 6725.06ms, mfu 2.16% iter 1360: loss 0.0543, time 6726.55ms, mfu 2.16% iter 1370: loss 0.0534, time 6724.51ms, mfu 2.17% iter 1380: loss 0.0541, time 6727.95ms, mfu 2.17% iter 1390: loss 0.0539, time 6724.11ms, mfu 2.18% iter 1400: loss 0.0537, time 6724.16ms, mfu 2.18% iter 1410: loss 0.0542, time 6725.16ms, mfu 2.19% iter 1420: loss 0.0529, time 6724.44ms, mfu 2.19% iter 1430: loss 0.0543, time 6725.28ms, mfu 2.19% iter 1440: loss 0.0521, time 6723.70ms, mfu 2.20% iter 1450: loss 0.0536, time 6725.08ms, mfu 2.20% iter 1460: loss 0.0518, time 6722.66ms, mfu 2.20% iter 1470: loss 0.0554, time 6731.12ms, mfu 2.20% iter 1480: loss 0.0549, time 6725.91ms, mfu 2.20% iter 1490: loss 0.0495, time 6723.77ms, mfu 2.21% step 1500: train loss 0.0425, val loss 1.0430 iter 1500: loss 0.0521, time 31360.21ms, mfu 2.03% iter 1510: loss 0.0519, time 6724.34ms, mfu 2.05% iter 1520: loss 0.0519, time 6730.46ms, mfu 2.07% iter 1530: loss 0.0526, time 6725.93ms, mfu 2.08% iter 1540: loss 0.0531, time 6723.86ms, mfu 2.10% iter 1550: loss 0.0567, time 6727.01ms, mfu 2.11% iter 1560: loss 0.0517, time 6724.64ms, mfu 2.12% iter 1570: loss 0.0515, time 6725.02ms, mfu 2.13% iter 1580: loss 0.0519, time 6726.27ms, mfu 2.14% iter 1590: loss 0.0549, time 6725.94ms, mfu 2.15% iter 1600: loss 0.0476, time 6730.66ms, mfu 2.16% iter 1610: loss 0.0489, time 6725.10ms, mfu 2.16% iter 1620: loss 0.0527, time 6725.42ms, mfu 2.17% iter 1630: loss 0.0513, time 6724.97ms, mfu 2.17% iter 1640: loss 0.0487, time 6727.78ms, mfu 2.18% iter 1650: loss 0.0479, time 6726.82ms, mfu 2.18% iter 1660: loss 0.0473, time 6725.82ms, mfu 2.19% iter 1670: loss 0.0520, time 6725.59ms, mfu 2.19% iter 1680: loss 0.0513, time 6729.69ms, mfu 2.19% iter 1690: loss 0.0501, time 6725.74ms, mfu 2.20% iter 1700: loss 0.0489, time 6726.38ms, mfu 2.20% iter 1710: loss 0.0510, time 6723.69ms, mfu 2.20% iter 1720: loss 0.0511, time 6723.50ms, mfu 2.20% iter 1730: loss 0.0496, time 6725.42ms, mfu 2.20% iter 1740: loss 0.0497, time 6725.61ms, mfu 2.21% step 1750: train loss 0.0413, val loss 1.0986 iter 1750: loss 0.0493, time 31377.04ms, mfu 2.03% iter 1760: loss 0.0510, time 6725.93ms, mfu 2.05% iter 1770: loss 0.0480, time 6725.60ms, mfu 2.07% iter 1780: loss 0.0489, time 6725.09ms, mfu 2.08% iter 1790: loss 0.0494, time 6724.56ms, mfu 2.10% iter 1800: loss 0.0493, time 6722.81ms, mfu 2.11% iter 1810: loss 0.0466, time 6731.40ms, mfu 2.12% iter 1820: loss 0.0473, time 6726.65ms, mfu 2.13% iter 1830: loss 0.0512, time 6725.48ms, mfu 2.14% iter 1840: loss 0.0503, time 6724.42ms, mfu 2.15% iter 1850: loss 0.0466, time 6726.17ms, mfu 2.16% iter 1860: loss 0.0496, time 6725.87ms, mfu 2.16% iter 1870: loss 0.0489, time 6725.05ms, mfu 2.17% iter 1880: loss 0.0512, time 6723.75ms, mfu 2.17% iter 1890: loss 0.0491, time 6724.07ms, mfu 2.18% iter 1900: loss 0.0505, time 6727.50ms, mfu 2.18% iter 1910: loss 0.0485, time 6725.10ms, mfu 2.19% iter 1920: loss 0.0441, time 6724.01ms, mfu 2.19% iter 1930: loss 0.0496, time 6725.16ms, mfu 2.19% iter 1940: loss 0.0475, time 6725.09ms, mfu 2.20% iter 1950: loss 0.0466, time 6741.88ms, mfu 2.20% iter 1960: loss 0.0499, time 6717.78ms, mfu 2.20% iter 1970: loss 0.0462, time 6717.14ms, mfu 2.20% iter 1980: loss 0.0486, time 6720.99ms, mfu 2.21% iter 1990: loss 0.0459, time 6717.38ms, mfu 2.21% step 2000: train loss 0.0407, val loss 1.1277 iter 2000: loss 0.0457, time 31321.42ms, mfu 2.03% iter 2010: loss 0.0506, time 6717.00ms, mfu 2.05% iter 2020: loss 0.0482, time 6717.80ms, mfu 2.07% iter 2030: loss 0.0475, time 6727.77ms, mfu 2.09% iter 2040: loss 0.0479, time 6723.31ms, mfu 2.10% iter 2050: loss 0.0503, time 6725.31ms, mfu 2.11% iter 2060: loss 0.0505, time 6724.51ms, mfu 2.12% iter 2070: loss 0.0488, time 6723.40ms, mfu 2.13% iter 2080: loss 0.0491, time 6724.15ms, mfu 2.14% iter 2090: loss 0.0479, time 6725.62ms, mfu 2.15% iter 2100: loss 0.0465, time 6724.08ms, mfu 2.16% iter 2110: loss 0.0462, time 6726.19ms, mfu 2.16% iter 2120: loss 0.0500, time 6717.14ms, mfu 2.17% iter 2130: loss 0.0473, time 6718.27ms, mfu 2.17% iter 2140: loss 0.0460, time 6716.42ms, mfu 2.18% iter 2150: loss 0.0468, time 6717.72ms, mfu 2.18% iter 2160: loss 0.0472, time 6718.03ms, mfu 2.19% iter 2170: loss 0.0477, time 6716.61ms, mfu 2.19% iter 2180: loss 0.0461, time 6716.06ms, mfu 2.19% iter 2190: loss 0.0462, time 6719.05ms, mfu 2.20% iter 2200: loss 0.0449, time 6716.96ms, mfu 2.20% iter 2210: loss 0.0456, time 6716.35ms, mfu 2.20% iter 2220: loss 0.0463, time 6717.91ms, mfu 2.21% iter 2230: loss 0.0461, time 6716.93ms, mfu 2.21% iter 2240: loss 0.0473, time 6717.73ms, mfu 2.21% step 2250: train loss 0.0400, val loss 1.1772 iter 2250: loss 0.0455, time 31318.77ms, mfu 2.04% iter 2260: loss 0.0467, time 6718.33ms, mfu 2.05% iter 2270: loss 0.0459, time 6717.86ms, mfu 2.07% iter 2280: loss 0.0427, time 6717.53ms, mfu 2.09% iter 2290: loss 0.0467, time 6717.68ms, mfu 2.10% iter 2300: loss 0.0472, time 6716.45ms, mfu 2.11% iter 2310: loss 0.0440, time 6717.39ms, mfu 2.12% iter 2320: loss 0.0436, time 6716.95ms, mfu 2.13% iter 2330: loss 0.0460, time 6719.28ms, mfu 2.14% iter 2340: loss 0.0464, time 6717.30ms, mfu 2.15% iter 2350: loss 0.0467, time 6717.53ms, mfu 2.16% iter 2360: loss 0.0452, time 6716.93ms, mfu 2.16% iter 2370: loss 0.0459, time 6712.33ms, mfu 2.17% iter 2380: loss 0.0444, time 6715.48ms, mfu 2.18% iter 2390: loss 0.0444, time 6717.34ms, mfu 2.18% iter 2400: loss 0.0452, time 6718.33ms, mfu 2.19% iter 2410: loss 0.0471, time 6719.79ms, mfu 2.19% iter 2420: loss 0.0466, time 6717.91ms, mfu 2.19% iter 2430: loss 0.0459, time 6717.44ms, mfu 2.20% iter 2440: loss 0.0453, time 6716.87ms, mfu 2.20% iter 2450: loss 0.0465, time 6716.74ms, mfu 2.20% iter 2460: loss 0.0469, time 6717.78ms, mfu 2.20% iter 2470: loss 0.0443, time 6722.11ms, mfu 2.21% iter 2480: loss 0.0458, time 6720.27ms, mfu 2.21% iter 2490: loss 0.0454, time 6718.34ms, mfu 2.21% step 2500: train loss 0.0396, val loss 1.1796 iter 2500: loss 0.0450, time 31326.53ms, mfu 2.04% iter 2510: loss 0.0447, time 6716.56ms, mfu 2.05% iter 2520: loss 0.0440, time 6718.03ms, mfu 2.07% iter 2530: loss 0.0441, time 6717.54ms, mfu 2.09% iter 2540: loss 0.0458, time 6720.05ms, mfu 2.10% iter 2550: loss 0.0443, time 6717.13ms, mfu 2.11% iter 2560: loss 0.0441, time 6716.29ms, mfu 2.12% iter 2570: loss 0.0450, time 6718.68ms, mfu 2.13% iter 2580: loss 0.0454, time 6715.28ms, mfu 2.14% iter 2590: loss 0.0459, time 6717.39ms, mfu 2.15% iter 2600: loss 0.0455, time 6716.79ms, mfu 2.16% iter 2610: loss 0.0465, time 6717.96ms, mfu 2.17% iter 2620: loss 0.0415, time 6716.70ms, mfu 2.17% iter 2630: loss 0.0431, time 6718.75ms, mfu 2.18% iter 2640: loss 0.0450, time 6717.89ms, mfu 2.18% iter 2650: loss 0.0448, time 6718.05ms, mfu 2.19% iter 2660: loss 0.0432, time 6716.36ms, mfu 2.19% iter 2670: loss 0.0438, time 6716.94ms, mfu 2.19% iter 2680: loss 0.0450, time 6717.11ms, mfu 2.20% iter 2690: loss 0.0441, time 6718.70ms, mfu 2.20% iter 2700: loss 0.0441, time 6715.99ms, mfu 2.20% iter 2710: loss 0.0439, time 6719.78ms, mfu 2.20% iter 2720: loss 0.0451, time 6717.49ms, mfu 2.21% iter 2730: loss 0.0437, time 6718.93ms, mfu 2.21% iter 2740: loss 0.0452, time 6717.41ms, mfu 2.21% step 2750: train loss 0.0391, val loss 1.2115 iter 2750: loss 0.0426, time 31304.00ms, mfu 2.04% iter 2760: loss 0.0435, time 6720.44ms, mfu 2.05% iter 2770: loss 0.0428, time 6717.12ms, mfu 2.07% iter 2780: loss 0.0456, time 6716.52ms, mfu 2.09% iter 2790: loss 0.0437, time 6717.15ms, mfu 2.10% iter 2800: loss 0.0428, time 6717.74ms, mfu 2.11% iter 2810: loss 0.0439, time 6717.78ms, mfu 2.12% iter 2820: loss 0.0434, time 6719.28ms, mfu 2.13% iter 2830: loss 0.0415, time 6717.15ms, mfu 2.14% iter 2840: loss 0.0435, time 6720.26ms, mfu 2.15% iter 2850: loss 0.0443, time 6716.93ms, mfu 2.16% iter 2860: loss 0.0420, time 6717.59ms, mfu 2.16% iter 2870: loss 0.0437, time 6718.52ms, mfu 2.17% iter 2880: loss 0.0413, time 6717.62ms, mfu 2.18% iter 2890: loss 0.0460, time 6717.39ms, mfu 2.18% iter 2900: loss 0.0430, time 6716.11ms, mfu 2.19% iter 2910: loss 0.0438, time 6716.13ms, mfu 2.19% iter 2920: loss 0.0418, time 6717.16ms, mfu 2.19% iter 2930: loss 0.0446, time 6719.93ms, mfu 2.20% iter 2940: loss 0.0437, time 6716.75ms, mfu 2.20% iter 2950: loss 0.0425, time 6718.70ms, mfu 2.20% iter 2960: loss 0.0419, time 6717.34ms, mfu 2.20% iter 2970: loss 0.0423, time 6718.68ms, mfu 2.21% iter 2980: loss 0.0443, time 6717.85ms, mfu 2.21% iter 2990: loss 0.0435, time 6719.43ms, mfu 2.21% step 3000: train loss 0.0388, val loss 1.2283 iter 3000: loss 0.0426, time 31321.81ms, mfu 2.04% iter 3010: loss 0.0427, time 6716.73ms, mfu 2.05% iter 3020: loss 0.0410, time 6718.31ms, mfu 2.07% iter 3030: loss 0.0434, time 6717.75ms, mfu 2.09% iter 3040: loss 0.0421, time 6717.16ms, mfu 2.10% iter 3050: loss 0.0419, time 6717.50ms, mfu 2.11% iter 3060: loss 0.0415, time 6720.10ms, mfu 2.12% iter 3070: loss 0.0437, time 6716.86ms, mfu 2.13% iter 3080: loss 0.0425, time 6717.52ms, mfu 2.14% iter 3090: loss 0.0428, time 6715.74ms, mfu 2.15% iter 3100: loss 0.0420, time 6718.21ms, mfu 2.16% iter 3110: loss 0.0423, time 6718.71ms, mfu 2.16% iter 3120: loss 0.0440, time 6718.46ms, mfu 2.17% iter 3130: loss 0.0432, time 6717.44ms, mfu 2.18% iter 3140: loss 0.0450, time 6718.97ms, mfu 2.18% iter 3150: loss 0.0422, time 6716.99ms, mfu 2.19% iter 3160: loss 0.0420, time 6718.67ms, mfu 2.19% iter 3170: loss 0.0428, time 6716.54ms, mfu 2.19% iter 3180: loss 0.0417, time 6718.24ms, mfu 2.20% iter 3190: loss 0.0426, time 6717.76ms, mfu 2.20% iter 3200: loss 0.0430, time 6717.03ms, mfu 2.20% iter 3210: loss 0.0430, time 6713.62ms, mfu 2.20% iter 3220: loss 0.0437, time 6718.46ms, mfu 2.21% iter 3230: loss 0.0416, time 6719.12ms, mfu 2.21% iter 3240: loss 0.0408, time 6717.70ms, mfu 2.21% step 3250: train loss 0.0383, val loss 1.2342 iter 3250: loss 0.0429, time 31320.40ms, mfu 2.04% iter 3260: loss 0.0425, time 6717.60ms, mfu 2.05% iter 3270: loss 0.0422, time 6716.02ms, mfu 2.07% iter 3280: loss 0.0425, time 6716.80ms, mfu 2.09% iter 3290: loss 0.0426, time 6717.83ms, mfu 2.10% iter 3300: loss 0.0442, time 6716.37ms, mfu 2.11% iter 3310: loss 0.0415, time 6717.39ms, mfu 2.12% iter 3320: loss 0.0437, time 6716.89ms, mfu 2.13% iter 3330: loss 0.0428, time 6716.10ms, mfu 2.14% iter 3340: loss 0.0409, time 6716.16ms, mfu 2.15% iter 3350: loss 0.0436, time 6716.77ms, mfu 2.16% iter 3360: loss 0.0448, time 6717.55ms, mfu 2.17% iter 3370: loss 0.0427, time 6718.26ms, mfu 2.17% iter 3380: loss 0.0428, time 6717.94ms, mfu 2.18% iter 3390: loss 0.0431, time 6718.31ms, mfu 2.18% iter 3400: loss 0.0413, time 6716.79ms, mfu 2.19% iter 3410: loss 0.0420, time 6717.92ms, mfu 2.19% iter 3420: loss 0.0401, time 6718.08ms, mfu 2.19% iter 3430: loss 0.0416, time 6717.68ms, mfu 2.20% iter 3440: loss 0.0419, time 6719.03ms, mfu 2.20% iter 3450: loss 0.0427, time 6719.49ms, mfu 2.20% iter 3460: loss 0.0410, time 6718.29ms, mfu 2.20% iter 3470: loss 0.0432, time 6721.21ms, mfu 2.21% iter 3480: loss 0.0400, time 6716.41ms, mfu 2.21% iter 3490: loss 0.0417, time 6716.89ms, mfu 2.21% step 3500: train loss 0.0382, val loss 1.2782 iter 3500: loss 0.0430, time 31321.74ms, mfu 2.04% iter 3510: loss 0.0409, time 6717.53ms, mfu 2.05% iter 3520: loss 0.0421, time 6716.91ms, mfu 2.07% iter 3530: loss 0.0410, time 6716.81ms, mfu 2.09% iter 3540: loss 0.0413, time 6717.16ms, mfu 2.10% iter 3550: loss 0.0431, time 6718.07ms, mfu 2.11% iter 3560: loss 0.0412, time 6717.65ms, mfu 2.12% iter 3570: loss 0.0412, time 6717.09ms, mfu 2.13% iter 3580: loss 0.0407, time 6718.64ms, mfu 2.14% iter 3590: loss 0.0400, time 6717.54ms, mfu 2.15% iter 3600: loss 0.0395, time 6718.74ms, mfu 2.16% iter 3610: loss 0.0413, time 6715.93ms, mfu 2.17% iter 3620: loss 0.0434, time 6717.37ms, mfu 2.17% iter 3630: loss 0.0422, time 6716.61ms, mfu 2.18% iter 3640: loss 0.0409, time 6716.35ms, mfu 2.18% iter 3650: loss 0.0403, time 6717.06ms, mfu 2.19% iter 3660: loss 0.0425, time 6720.31ms, mfu 2.19% iter 3670: loss 0.0423, time 6717.68ms, mfu 2.19% iter 3680: loss 0.0409, time 6717.42ms, mfu 2.20% iter 3690: loss 0.0408, time 6717.52ms, mfu 2.20% iter 3700: loss 0.0411, time 6717.48ms, mfu 2.20% iter 3710: loss 0.0406, time 6717.29ms, mfu 2.20% iter 3720: loss 0.0411, time 6717.15ms, mfu 2.21% iter 3730: loss 0.0409, time 6716.16ms, mfu 2.21% iter 3740: loss 0.0407, time 6720.07ms, mfu 2.21% step 3750: train loss 0.0379, val loss 1.2962 iter 3750: loss 0.0397, time 31319.66ms, mfu 2.04% iter 3760: loss 0.0411, time 6717.51ms, mfu 2.05% iter 3770: loss 0.0434, time 6715.86ms, mfu 2.07% iter 3780: loss 0.0413, time 6717.62ms, mfu 2.09% iter 3790: loss 0.0417, time 6720.24ms, mfu 2.10% iter 3800: loss 0.0402, time 6717.78ms, mfu 2.11% iter 3810: loss 0.0405, time 6717.37ms, mfu 2.12% iter 3820: loss 0.0410, time 6715.61ms, mfu 2.13% iter 3830: loss 0.0393, time 6718.23ms, mfu 2.14% iter 3840: loss 0.0419, time 6717.10ms, mfu 2.15% iter 3850: loss 0.0402, time 6718.40ms, mfu 2.16% iter 3860: loss 0.0442, time 6717.35ms, mfu 2.17% iter 3870: loss 0.0408, time 6718.11ms, mfu 2.17% iter 3880: loss 0.0421, time 6720.44ms, mfu 2.18% iter 3890: loss 0.0403, time 6717.07ms, mfu 2.18% iter 3900: loss 0.0400, time 6717.84ms, mfu 2.19% iter 3910: loss 0.0407, time 6717.50ms, mfu 2.19% iter 3920: loss 0.0402, time 6717.02ms, mfu 2.19% iter 3930: loss 0.0399, time 6717.21ms, mfu 2.20% iter 3940: loss 0.0419, time 6716.86ms, mfu 2.20% iter 3950: loss 0.0400, time 6716.77ms, mfu 2.20% iter 3960: loss 0.0403, time 6719.40ms, mfu 2.20% iter 3970: loss 0.0392, time 6718.43ms, mfu 2.21% iter 3980: loss 0.0412, time 6717.59ms, mfu 2.21% iter 3990: loss 0.0416, time 6716.11ms, mfu 2.21% step 4000: train loss 0.0376, val loss 1.2869 iter 4000: loss 0.0410, time 31321.91ms, mfu 2.04% iter 4010: loss 0.0413, time 6719.94ms, mfu 2.05% iter 4020: loss 0.0409, time 6719.17ms, mfu 2.07% iter 4030: loss 0.0406, time 6718.17ms, mfu 2.09% iter 4040: loss 0.0406, time 6716.91ms, mfu 2.10% iter 4050: loss 0.0395, time 6717.68ms, mfu 2.11% iter 4060: loss 0.0402, time 6716.04ms, mfu 2.12% iter 4070: loss 0.0397, time 6718.28ms, mfu 2.13% iter 4080: loss 0.0408, time 6717.37ms, mfu 2.14% iter 4090: loss 0.0413, time 6720.30ms, mfu 2.15% iter 4100: loss 0.0410, time 6717.64ms, mfu 2.16% iter 4110: loss 0.0393, time 6717.58ms, mfu 2.16% iter 4120: loss 0.0404, time 6717.90ms, mfu 2.17% iter 4130: loss 0.0397, time 6717.02ms, mfu 2.18% iter 4140: loss 0.0421, time 6716.81ms, mfu 2.18% iter 4150: loss 0.0403, time 6717.45ms, mfu 2.19% iter 4160: loss 0.0405, time 6717.70ms, mfu 2.19% iter 4170: loss 0.0409, time 6716.45ms, mfu 2.19% iter 4180: loss 0.0411, time 6718.44ms, mfu 2.20% iter 4190: loss 0.0392, time 6717.25ms, mfu 2.20% iter 4200: loss 0.0391, time 6718.75ms, mfu 2.20% iter 4210: loss 0.0386, time 6716.05ms, mfu 2.20% iter 4220: loss 0.0406, time 6718.07ms, mfu 2.21% iter 4230: loss 0.0413, time 6716.42ms, mfu 2.21% iter 4240: loss 0.0396, time 6717.36ms, mfu 2.21% step 4250: train loss 0.0375, val loss 1.3035 iter 4250: loss 0.0399, time 31327.05ms, mfu 2.04% iter 4260: loss 0.0395, time 6717.65ms, mfu 2.05% iter 4270: loss 0.0396, time 6717.16ms, mfu 2.07% iter 4280: loss 0.0398, time 6717.09ms, mfu 2.09% iter 4290: loss 0.0394, time 6715.74ms, mfu 2.10% iter 4300: loss 0.0407, time 6716.54ms, mfu 2.11% iter 4310: loss 0.0407, time 6719.79ms, mfu 2.12% iter 4320: loss 0.0397, time 6718.60ms, mfu 2.13% iter 4330: loss 0.0393, time 6716.90ms, mfu 2.14% iter 4340: loss 0.0393, time 6716.83ms, mfu 2.15% iter 4350: loss 0.0411, time 6717.65ms, mfu 2.16% iter 4360: loss 0.0397, time 6717.23ms, mfu 2.17% iter 4370: loss 0.0394, time 6716.87ms, mfu 2.17% iter 4380: loss 0.0405, time 6718.43ms, mfu 2.18% iter 4390: loss 0.0397, time 6720.90ms, mfu 2.18% iter 4400: loss 0.0403, time 6716.38ms, mfu 2.19% iter 4410: loss 0.0406, time 6717.65ms, mfu 2.19% iter 4420: loss 0.0392, time 6718.82ms, mfu 2.19% iter 4430: loss 0.0412, time 6716.16ms, mfu 2.20% iter 4440: loss 0.0402, time 6714.76ms, mfu 2.20% iter 4450: loss 0.0386, time 6718.94ms, mfu 2.20% iter 4460: loss 0.0409, time 6717.27ms, mfu 2.20% iter 4470: loss 0.0406, time 6717.41ms, mfu 2.21% iter 4480: loss 0.0394, time 6718.03ms, mfu 2.21% iter 4490: loss 0.0387, time 6718.29ms, mfu 2.21% step 4500: train loss 0.0373, val loss 1.3263 iter 4500: loss 0.0412, time 31322.22ms, mfu 2.04% iter 4510: loss 0.0393, time 6717.41ms, mfu 2.05% iter 4520: loss 0.0402, time 6720.04ms, mfu 2.07% iter 4530: loss 0.0394, time 6715.93ms, mfu 2.09% iter 4540: loss 0.0407, time 6716.81ms, mfu 2.10% iter 4550: loss 0.0401, time 6705.59ms, mfu 2.11% iter 4560: loss 0.0401, time 6716.34ms, mfu 2.12% iter 4570: loss 0.0405, time 6718.45ms, mfu 2.13% iter 4580: loss 0.0413, time 6716.67ms, mfu 2.14% iter 4590: loss 0.0414, time 6716.92ms, mfu 2.15% iter 4600: loss 0.0425, time 6719.87ms, mfu 2.16% iter 4610: loss 0.0404, time 6719.43ms, mfu 2.17% iter 4620: loss 0.0413, time 6718.08ms, mfu 2.17% iter 4630: loss 0.0404, time 6717.72ms, mfu 2.18% iter 4640: loss 0.0398, time 6717.30ms, mfu 2.18% iter 4650: loss 0.0400, time 6717.88ms, mfu 2.19% iter 4660: loss 0.0405, time 6716.53ms, mfu 2.19% iter 4670: loss 0.0404, time 6717.17ms, mfu 2.19% iter 4680: loss 0.0394, time 6718.23ms, mfu 2.20% iter 4690: loss 0.0383, time 6718.38ms, mfu 2.20% iter 4700: loss 0.0391, time 6717.32ms, mfu 2.20% iter 4710: loss 0.0399, time 6717.72ms, mfu 2.20% iter 4720: loss 0.0399, time 6719.00ms, mfu 2.21% iter 4730: loss 0.0390, time 6717.77ms, mfu 2.21% iter 4740: loss 0.0405, time 6718.33ms, mfu 2.21% step 4750: train loss 0.0373, val loss 1.3539 iter 4750: loss 0.0393, time 31320.65ms, mfu 2.04% iter 4760: loss 0.0388, time 6718.68ms, mfu 2.05% iter 4770: loss 0.0407, time 6718.30ms, mfu 2.07% iter 4780: loss 0.0400, time 6718.88ms, mfu 2.09% iter 4790: loss 0.0384, time 6717.39ms, mfu 2.10% iter 4800: loss 0.0403, time 6717.18ms, mfu 2.11% iter 4810: loss 0.0386, time 6717.94ms, mfu 2.12% iter 4820: loss 0.0391, time 6716.53ms, mfu 2.13% iter 4830: loss 0.0400, time 6718.95ms, mfu 2.14% iter 4840: loss 0.0395, time 6717.13ms, mfu 2.15% iter 4850: loss 0.0401, time 6717.66ms, mfu 2.16% iter 4860: loss 0.0404, time 6716.33ms, mfu 2.17% iter 4870: loss 0.0402, time 6716.98ms, mfu 2.17% iter 4880: loss 0.0395, time 6717.03ms, mfu 2.18% iter 4890: loss 0.0409, time 6718.68ms, mfu 2.18% iter 4900: loss 0.0407, time 6717.79ms, mfu 2.19% iter 4910: loss 0.0395, time 6718.37ms, mfu 2.19% iter 4920: loss 0.0393, time 6716.26ms, mfu 2.19% iter 4930: loss 0.0393, time 6717.15ms, mfu 2.20% iter 4940: loss 0.0389, time 6716.51ms, mfu 2.20% iter 4950: loss 0.0395, time 6717.58ms, mfu 2.20% iter 4960: loss 0.0386, time 6717.74ms, mfu 2.20% iter 4970: loss 0.0402, time 6717.32ms, mfu 2.21% iter 4980: loss 0.0396, time 6717.51ms, mfu 2.21% iter 4990: loss 0.0394, time 6719.40ms, mfu 2.21% step 5000: train loss 0.0371, val loss 1.3384 iter 5000: loss 0.0382, time 31322.04ms, mfu 2.04%

- python sample.py --out_dir=out-mitos

Overriding: out_dir = out-mitos WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0 number of parameters: 10.68M Loading meta from data/mitos/meta.pkl...

Ποια είναι τα βήματα της διαδικασίας απονομής πολεμικής σύνταξης; Τα βήματα περιλαμβάνουν την πρωτοκόλληση της αίτησης, τη χρέωση στην αρμόδια υπηρεσία, την επιτόπια αυτοπροσωπία, την έκδοση της άδειας απαλλαγής από τη Διεύθυνση Πλοηγικής Υπηρεσίας και την απαλλαγή της απόφασης στο Γραφείο του Βουλευτή του Ελληνικού Κοινοβουλίου.

Τι αφορά η διαδικασία της Άδειας για Πρόσβαση στο Αποδεσμευμένο Χαρτώο Αρχειακό Υλικό; Η διαδικασία αφορά στην πρόσβαση στο αναγνωστήριο της Υπηρεσίας Διπλωματικο

ή αφορά η διαδικασία της τηλεδιάσκεψης με τη Δημόσια Υπηρεσία Απασχόλησης (ΔΥΠΑ) ; Η διαδικασία αφορά στην πραγματοποίηση τηλεδιάσκεψης με τη Δημόσια Υπηρεσία Απασχόλησης (ΔΥΠΑ) προσφέροντας συμβουλευτικές υπηρεσίες, με την υποχρεωτική αξιολόγηση προσφυγής, τη διενέργεια επιθεωρήσεων, την κατανομή επιθεωρητών και την υλοποίηση της διαδικασίας.

Ποιες είναι οι προϋποθέσεις για τη διαδικασία αυτή ; Οι προϋποθέσεις της διαδικασίας:

  • Κατοχή κωδικών για είσοδο σε λογισμικό

Ποια είναι τα βήματ

Προϋποθέσεις της διαδικασίας έκδοσης διαταγής προαγωγής/επανάληψης/διαγραφής μαθημάτων ή δοκίμων στις Σχολές Λ.Σ.-ΕΛ.ΑΚΤΗ; Ναι, οι συνθήκες περιλαμβάνουν την κατάρτιση δύο αντιτύπων πινάκων επιτυχόντων και αποτυχόντων μετά το πέρας των εξετάσεων κάθε εξαμήνου.

Ποια είναι τα βήματα της διαδικασίας; Τα βήματα περιλαμβάνουν την παραλαβή της αίτησης, την παραλαβή και αξιολόγηση της αίτησης, την ηλεκτρονική κατάθεση αίτησης, την αξιολόγηση της αίτησης ψηφιακά, την ενημέρωση της αξιολόγησης

Τι αφορά η διαδικασία αναβολής κατάταξης στράτευσης; Η διαδικασία αφορά στην αναβολή κατάταξης ασφάλισης για πρόσβαση στα δεδομένα αποστέλλεται στην εφαρμογή της Οδηγίας Προϊόντων Επιχειρήσεων Πλοίων.

Ποιες είναι οι προϋποθέσεις για τη διαδικασία αυτή; Για τη σύσταση συνεταιρισμού απαιτείται υπογραφή της απαιτείται υπογραφή της συμφωνίας της συμφωνίας της συμμόρφωσης τιμής της ενωσιακής νομοθεσίας με την αναγνώριση αποστολή των στοιχείων συνταγών αναλογισμών και την ενημέρωση των αστικώ

Ποια είναι τα βήματα της διαδικασίας παρακολούθησης εσόδων από μερίσματα μετοχικών τίτλων κυριότητας Ελληνικού Δημοσίου;

  1. Παραλαβή της αίτησης και πρωτοκόλληση
  2. Έλεγχος πληρότητας δικαιολογητικών
  3. Έκδοση Απόφασης Δημάρχου για τη μεταδημοτολόγηση των επιτροπής Απασχόλησης
  4. Αποστολή των στοιχείων των επιτροπών στην ηλεκτρονική αρμόδια υπηρεσία
  5. Παραλαβή αίτησης από το Τμήμα Πρωτοκόλληση
  6. Έλεγχος των δικαιολογητικών και της εγγραφής στο e-Μητρώο πλοίων
  7. Έγκριση οικονομικών στοιχεί

Ποια είναι τα βήματα της διαδικασίας έκδοσης βεβαίωσης αυτασφάλισης; Τα βήματα περιλαμβάνουν την υποβολή αίτησης, την πρωτοκόλληση της αίτησης, την ηλεκτρονική υποβολή της αίτησης, την εξέταση της αίτησης αίτησης από την Υπηρεσία, τη σύνταξη πίνακα μη ικανών υποψηφίων, τη διενέργεια εξετάσεων και την έκδοση της άδειας.

Τι αφορά η διαδικασία υποβολής δήλωσης συγκομιδής αμπελουργικών προϊόντων; Η διαδικασία αφορά στη δήλωση συγκεκριμένων προγραμμάτων εμπορικών επιχειρήσεων μετά από την αγορά

Τι αφορά η διαδικασία των Προγραμμάτων Κατασκηνώσεων (ΔΥΠΑ) ; Η διαδικασία αφορά στην επιδότηση δικαιούχων για τη διαμονή των παιδιών τους σε Παιδικές Κατασκηνώσεις του Μητρώου Παρόχων της Δημόσιας Υπηρεσίας Απασχόλησης (Δ.ΥΠ.Α.).

Ποιες είναι οι προϋποθέσεις για τη συμμετοχή στη διαδικασία; Οι προϋποθέσεις περιλαμβάνουν την αποστολή εγγράφων πρακτικών Γενικής Συνέλευσης ή Διοικητικού Συμβουλίου Ναυτικής εταιρείας, την καταχώρηση των αταικών συνεταιρισμών και την ενημέρωση του μητρώου.

Προ

Ποια είναι τα βήματα της διαδικασίας παροχής νομικής βοήθειας ;

  1. Παραλαβή αίτησης από αιτούντα και έλεγχος.
  2. Έλεγχος τυπικών προϋποθέσεων και πληρότητας της αίτησης από την αρμόδια υπηρεσία.
  3. Έκδοση απόφασης απόσπασης και διάθεσης υπαλλήλου σε Γραφείο Βουλευτή του Ελληνικού Κοινοβουλίου.
  4. Αρνητική απάντηση της αίτησης στο αίτημα απόσπασης και διάθεσης υπαλλήλου σε Γραφείο Βουλευτή του Ελληνικού Κοινοβουλίου.
  5. Αρνητική απάντηση στο αίτημα απόσπασης και διάθεσης υπαλλήλου σε Γραφείο Βο

Ποιες είναι οι συνθήκες της διαδικασίας; Οι συνθήκες περιλαμβάνουν την ύπαρξη όλων των νομίμων παραστατικών που αφορούν στις δαπάνες για την αξιοποίηση περιουσιακών στοιχείων του Δημοσίου, την καταχώριση των ατομικών στοιχείων των ατομικών φακέλων των Δοκίμων των Σχολών, την ενημέρωση Μητρώου Διαβατηρίων, την ενημέρωση των πορείας εγγραφής, την μη τέγκριση του Μητρώου Παρόχων και την ενημέρωση του ενδιαφερόμενου.

Τι αφορά η διαδικασία εξέτασης κατασχεμένων τροφίμων ζωικής προέλευσης; Η δια

Ποιες είναι οι προϋποθέσεις για τη διαδικασία παραχώρησης ακινήτου; Ο αιτών πρέπει να έχει προηγηθεί η έκδοση ανάλυσης ή αντικατάστασης εμπορεί να χρόνου ανεργίας και να λαμβάνουν κωδικό πρόσβασης με διάρκεια ισχύος έξι μηνών, ο οποίος μπορεί να ανανεωθεί.

Ποια είναι τα βήματα της διαδικασίας πρόσβασης στο Αποδεσμευμένο Ψηφιοποιημένο Αρχειακό Υλικό; Τα βήματα περιλαμβάνουν την εισαγωγή στοιχείων στην ηλεκτρονική φόρμα, την αυτόματη αποστολή κωδικού πρόσβασης στον εγγεγραμμένο χρήστη και τη