Using TF Keras to transfer learn + fine-tune a MobileNetV2 model on our own dataset of dogs/cats.
We get around 93% accuracy on the test dataset.
Ipython notebook training testing model
We build our own dataset from existing flicker images of cats and dogs, and then train a tensorflow neural network to classify cats and dogs.
Run using ./cats_vs_dogs.py
Currently a single layer NN, no successful learning yet
usage: cats_vs_dogs.py [-h] [--cat_dir CAT_DIR] [--dog_dir DOG_DIR]
[--num_steps NUM_STEPS]
optional arguments:
-h, --help show this help message and exit
--cat_dir CAT_DIR Directory for storing input cat images
--dog_dir DOG_DIR Directory for storing input dog images
--num_steps NUM_STEPS
Number of steps to train model
resize_images.py
contains a script to resize all passed in images into
64x64 grayscale pngs named ####.png
monotonically increasing in the
specified output folder
Usage: resize_images.py [options] image1 [image2 ...]
Options:
-h, --help show this help message and exit
-o OUTPUT_FOLDER, --output_folder=OUTPUT_FOLDER
Output folder to save resized images to
-n MAX_N, --max_number=MAX_N
Maximum number of images to process
-d, --dryrun Do a dry run (no processing/saving)