Ender-li's Stars
CyC2018/CS-Notes
:books: 技术面试必备基础知识、Leetcode、计算机操作系统、计算机网络、系统设计
Snailclimb/JavaGuide
「Java学习+面试指南」一份涵盖大部分 Java 程序员所需要掌握的核心知识。准备 Java 面试,首选 JavaGuide!
krahets/hello-algo
《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing
izackwu/TeachYourselfCS-CN
TeachYourselfCS 的中文翻译 | A Chinese translation of TeachYourselfCS
dmlc/dgl
Python package built to ease deep learning on graph, on top of existing DL frameworks.
singgel/JAVA
存放JAVA开发的设计**、算法:《剑指Offer》、《编程珠玑》、《深入理解Java虚拟机:JVM高级特性与最佳实践》、《重构-改善既有代码的设计 中文版》、《clean_code(中文完整版)》、《Java编程**(第4版)》、《Java核心技术 卷I (第8版)》、《Quartz_Job+Scheduling_Framework》;一些大的上传不上来的文件在README
moesnow/March7thAssistant
崩坏:星穹铁道全自动 三月七小助手
shenweichen/GraphEmbedding
Implementation and experiments of graph embedding algorithms.
DeepGraphLearning/LiteratureDL4Graph
A comprehensive collection of recent papers on graph deep learning
ChandlerBang/awesome-self-supervised-gnn
Papers about pretraining and self-supervised learning on Graph Neural Networks (GNN).
PyGCL/PyGCL
PyGCL: A PyTorch Library for Graph Contrastive Learning
twjiang/graphSAGE-pytorch
A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.
chaitjo/efficient-gnns
Code and resources on scalable and efficient Graph Neural Networks
xkLi-Allen/Awesome-GNN-Research
My future research
coder-duibai/Contrastive-Learning-Papers-Codes
A comprehensive list of Awesome Contrastive Learning Papers&Codes.Research include, but are not limited to: CV, NLP, Audio, Video, Multimodal, Graph, Language, etc.
zhao-tong/graph-data-augmentation-papers
A curated list of graph data augmentation papers.
wusw14/GNN-in-RS
sangyx/gtrick
Bag of Tricks for Graph Neural Networks.
zhumeiqiBUPT/AM-GCN
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks
chrsmrrs/k-gnn
Source code for our AAAI paper "Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks".
rish-16/grafog
Graph Data Augmentation Library for PyTorch Geometric
logseminar/Schedule
Schedule for learning on graphs seminar
Shen-Lab/GraphCL_Automated
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang; [WSDM 2022] "Bringing Your Own View: Graph Contrastive Learning without Prefabricated Data Augmentations" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
SitaoLuan/ACM-GNN
NeurIPS 2022, Revisiting Heterophily For Graph Neural Networks, official PyTorch implementation for Adaptive Channel Mixing (ACM) GNN framework
SongtaoLiu0823/LAGNN
[ICML 2022] Local Augmentation for Graph Neural Networks
LingxiaoShawn/GNNAsKernel
Source code for From Stars to Subgraphs (ICLR 2022)
kaize0409/awesome-graph-data-augmentaion
A curated list of publications and code about data augmentaion for graphs.
yifeiacc/COSTA
Code for KDD'22 paper, COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive Learning
Yangyeeee/SGAT
susheels/gnns-and-local-assortativity
This repo contains a reference implementation for the paper "Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns"