It's recommended to go through one of the above walkthroughs, but if you already have and just need to remember one of the commands, here they are:
git clone https://github.com/cloud-annotations/training.git &&
cd training
- classification
svn export -r 308 https://github.com/tensorflow/hub/trunk/examples/image_retraining classification echo > classification/__init__.py
- object detection
svn export -r 8436 https://github.com/tensorflow/models/trunk/research/object_detection && svn export -r 8436 https://github.com/tensorflow/models/trunk/research/slim
python -m bucket.login
python -m bucket.download
- classification
mkdir exported_graph python -m classification.retrain \ --image_dir=.tmp/data \ --saved_model_dir=exported_graph/saved_model \ --tfhub_module=https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/1 \ --how_many_training_steps=500 \ --output_labels=exported_graph/labels.txt
- object detection
export PYTHONPATH=$PYTHONPATH:`pwd`/slim python -m object_detection.model_main \ --pipeline_config_path=.tmp/pipeline.config \ --model_dir=.tmp/checkpoint \ --num_train_steps=500 && python -m scripts.quick_export_graph
python -m wml.login
- classification
python setup_classification.py sdist
- object detection
python setup_object_detection.py sdist
python -m wml.start_training_run
python -m scripts.convert --tfjs --tflite --coreml