Simulated Data Summary, version 2

2017-05-02

The data was generated with a fastsimcoal simulation that created allele frequencies at equilibrium and were then used to initialize and run 5 generations of an rmetasim simulation.

Scenario parameters

The scenarios were composed of the following parameter combinations:

   scenario  Ne  Nm theta       mig.type num.loci num.pops div.time
1         1  50 0.0   0.2         island     1000        5    25000
2         2 500 0.0   0.2         island     1000        5    25000
3         3  50 0.1   0.2         island     1000        5    25000
4         4 500 0.1   0.2         island     1000        5    25000
5         5  50 0.5   0.2         island     1000        5    25000
6         6 500 0.5   0.2         island     1000        5    25000
7         7  50 1.0   0.2         island     1000        5    25000
8         8 500 1.0   0.2         island     1000        5    25000
9         9  50 5.0   0.2         island     1000        5    25000
10       10 500 5.0   0.2         island     1000        5    25000
11       11  50 0.0   0.2 stepping.stone     1000        5    25000
12       12 500 0.0   0.2 stepping.stone     1000        5    25000
13       13  50 0.1   0.2 stepping.stone     1000        5    25000
14       14 500 0.1   0.2 stepping.stone     1000        5    25000
15       15  50 0.5   0.2 stepping.stone     1000        5    25000
16       16 500 0.5   0.2 stepping.stone     1000        5    25000
17       17  50 1.0   0.2 stepping.stone     1000        5    25000
18       18 500 1.0   0.2 stepping.stone     1000        5    25000
19       19  50 5.0   0.2 stepping.stone     1000        5    25000
20       20 500 5.0   0.2 stepping.stone     1000        5    25000
   mut.rate mig.rate
1     1e-03    0e+00
2     1e-04    0e+00
3     1e-03    2e-03
4     1e-04    2e-04
5     1e-03    1e-02
6     1e-04    1e-03
7     1e-03    2e-02
8     1e-04    2e-03
9     1e-03    1e-01
10    1e-04    1e-02
11    1e-03    0e+00
12    1e-04    0e+00
13    1e-03    2e-03
14    1e-04    2e-04
15    1e-03    1e-02
16    1e-04    1e-03
17    1e-03    2e-02
18    1e-04    2e-03
19    1e-03    1e-01
20    1e-04    1e-02

The "island" model specifies a migration matrix such as the following from scenario 3, where the migration rate for a population is 0.002 split among the other 4 populations:

       [,1]   [,2]   [,3]   [,4]   [,5]
[1,] 0.9980 0.0005 0.0005 0.0005 0.0005
[2,] 0.0005 0.9980 0.0005 0.0005 0.0005
[3,] 0.0005 0.0005 0.9980 0.0005 0.0005
[4,] 0.0005 0.0005 0.0005 0.9980 0.0005
[5,] 0.0005 0.0005 0.0005 0.0005 0.9980

The "stepping.stone" model specifies a migration matrix such as the following from scenario 15, where the migration rate for a population is 0.01 split between the neighboring two populations:

      [,1]  [,2]  [,3]  [,4]  [,5]
[1,] 0.990 0.005 0.000 0.000 0.005
[2,] 0.005 0.990 0.005 0.000 0.000
[3,] 0.000 0.005 0.990 0.005 0.000
[4,] 0.000 0.000 0.005 0.990 0.005
[5,] 0.005 0.000 0.000 0.005 0.990

Files

All output files are contained in the folder ".sim.data", where "" defaults to "sim.results.YYYMMDD.HHMM". Each scenario has gtypes objects stored in a R workspace file, named "gtypes.sc.rdata" where "sc" is the scenario number. This file contains two objects:

  • fsc.list - A list of gtypes from fastsimcoal, one per replicate. The scenario parameters are stored as a one row data.frame in attr(fsc.list, "scenario").
  • rms.list - A list of gtypes from rmetasim after initialization with the corresponding gtypes object from fsc.list. This contains the final genotypes. The scenario parameters are also stored as a one row data.frame in attr(rms.list, "scenario").

Diagnostics

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.