[Paper] https://arxiv.org/abs/2107.10981
The code has been tested in the following environment:
Package | Version | Comment |
---|---|---|
PyTorch | 1.9.0 | |
point_cloud_utils | 0.18.0 | For evaluation only. It loads meshes to compute point-to-mesh distances. |
pytorch3d | 0.5.0 | For evaluation only. It computes point-to-mesh distances. |
pytorch-cluster | 1.5.9 | We only use fps (farthest point sampling) to merge denoised patches. |
conda create --name score-denoise python=3.8
conda activate score-denoise
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install -c conda-forge tqdm scipy scikit-learn pyyaml easydict tensorboard pandas
# point_cloud_utils
conda install -c conda-forge point_cloud_utils==0.18.0
# Pytorch3d
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c pytorch3d pytorch3d==0.5.0
# pytorch-scatter
conda install -c pyg pytorch-cluster==1.5.9
Download link: https://drive.google.com/drive/folders/1--MvLnP7dsBgBZiu46H0S32Y1eBa_j6P?usp=sharing
Please extract data.zip
to data
folder.
# PUNet dataset, 10K Points
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.01 --niters 1
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.02 --niters 1
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.03 --niters 2
# PUNet dataset, 50K Points
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.01 --niters 1
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.02 --niters 1
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.03 --niters 2
python test_single.py --input_xyz <input_xyz_path> --output_xyz <output_xyz_path>
You may also barely run python test_single.py
to see a quick example.
python test_large.py --input_xyz <input_xyz_path> --output_xyz <output_xyz_path>
You may also barely run python test_large.py
to see a quick example.
python train.py
Please find tunable parameters in the script.
@InProceedings{Luo_2021_ICCV,
author = {Luo, Shitong and Hu, Wei},
title = {Score-Based Point Cloud Denoising},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {4583-4592}
}